996 resultados para Physical anthropology.
Resumo:
The relationship between the alpha-N index and physical properties of neutral phosphorus extractants is studied. Using the general alpha-N index which could describe extractants with minute difference in structure, the good correlation between it and various physical properties of the neutral phosphorus extractants (e.g., densities, refractive index, shift ratio of paper chromatography and IR frequencies of bond P = O) is obtained. The result indicates that general alpha-N index is a good topological index of organic compounds.
Resumo:
In order to examine the effectiveness of engineering protection against localized scour in front of the south groin-group of the Yangtze Estuary Waterway Improvement Project, Phase I, an undistorted physical model on a geometric scale of 1:250 is built in this study, covering two groins and their adacent estuarine areas. By use of rinsing fix-bed model as well as localized mobile-bed model the experiment is undertaken under bi-directional steady flow. According to the experimental results, waterway dredging leads to the increase in steram velocity, the increase being larger during the ebb than during the flood. Construction of the upstream groin has some influence on the flow patterns near the downstream groin. Localized scour in front of the groin-heads is controlled mainly by ebb flow. In the case of a riverbed composed entirely of silt, the depths of localized scour in front of the two groin-heads are 27 m and 29 m, respectively. In reality, the underneath sediment of the prototype riverbed is clay whose threshold velocity is much higher than the stream velocity in the Yangtze Estuary; therefore, the depths of localized scour will not be much larger than the thickness of the silt layer, i. e. 7.4 m and 4.7 m, respectively. The designed aprons covering the riverbed in fron of the groin-heads are very effective in scour control. Aprons of slightly smaller size can also fulfill the task of protection, but the area of localized scour increases significantly.
Resumo:
The one-dimensional Kraus-Turner mixed layer model improved by Liu is developed to consider the effect of salinity and the equations of temperature and salinity under the mixed layer. On this basis, the processes of growth and death of surface layer temperature inversion is numerically simulated under different environmental parameters. At the same time, the physical mechanism is preliminarily discussed combining the observations at the station of TOGA-COARE 0 degrees N, 156 degrees E. The results indicate that temperature inversion sensitively depends on the mixed layer depth, sea surface wind speed and solar shortwave radiation, etc., and appropriately meteorological and hydrological conditions often lead to the similarly periodical occurrence of this inversion phenomenon.
Resumo:
To investigate the seasonal and interannual variations in biological productivity in the South China Sea (SCS), a Pacific basin-wide physical - biogeochemical model has been developed and used to estimate the biological productivity and export flux in the SCS. The Pacific circulation model, based on the Regional Ocean Model Systems (ROMS), is forced with daily air-sea fluxes derived from the NCEP (National Centers for Environmental Prediction) reanalysis between 1990 and 2004. The biogeochemical processes are simulated with a carbon, Si(OH)(4), and nitrogen ecosystem (CoSiNE) model consisting of silicate, nitrate, ammonium, two phytoplankton groups (small phytoplankton and large phytoplankton), two zooplankton grazers (small micrograzers and large mesozooplankton), and two detritus pools. The ROMS-CoSiNE model favourably reproduces many of the observed features, such as ChI a, nutrients, and primary production (PP) in the SCS. The modelled depth-integrated PP over the euphotic zone (0-125 m) varies seasonally, with the highest value of 386 mg C m (-2) d (-1) during winter and the lowest value of 156 mg C m (-2) d (-1) during early summer. The annual mean value is 196 mg C m (-2) d (-1). The model-integrated annual mean new production (uptake of nitrate), in carbon units, is 64.4 mg C m (-2) d (-1) which yields an f-ratio of 0.33 for the entire SCS. The modelled export ratio (e-ratio: the ratio of export to PP) is 0.24 for the basin-wide SCS. The year-to-year variation of biological productivity in the SCS is weaker than the seasonal variation. The large phytoplankton group tends to dominate over the smaller phytoplankton group, and likely plays an important role in determining the interannual variability of primary and new production.
Resumo:
A three-dimensional (3-D) coupled physical and biological model was used to investigate the physical processes and their influence on the ecosystem dynamics of the Bohai Sea of China. The physical processes include M-2 tide, time - varying wind forcing and river discharge. Wind records from I to 31 May in 1993 were selected to force the model. The biological model is based on a simple, nitrate and phosphate limited, lower trophic food web system. The simulated results showed that variation of residual currents forced by M, tide, river discharge and time-varying wind had great impact on the distribution of phytoplankton biomass in the Laizhou Bay. High phytoplankton biomass appeared in the upwelling region. Numerical experiments based on the barotropic model and baroclinic model with no wind and water discharge were also conducted. Differences in the results by the baroclinic model and the barotropic model were significant: more patches appeared in the baroclinic model comparing with the barotropic model. And in the baroclinic model, the subsurface maximum phytoplankton biomass patches formed in the stratified water.
Resumo:
Direct simulations of wind musical instruments using the compressible Navier Stokes equations have recently become possible through the use of parallel computing and through developments in numerical methods. As a first demonstration, the flow of air and the generation of musical tones inside a soprano recorder are simulated numerically. In addition, physical measurements are made of the acoustic signal generated by the recorder at different blowing speeds. The comparison between simulated and physically measured behavior is encouraging and points towards ways of improving the simulations.
Resumo:
This report describes MM, a computer program that can model a variety of mechanical and fluid systems. Given a system's structure and qualitative behavior, MM searches for models using an energy-based modeling framework. MM uses general facts about physical systems to relate behavioral and model properties. These facts enable a more focussed search for models than would be obtained by mere comparison of desired and predicted behaviors. When these facts do not apply, MM uses behavior-constrained qualitative simulation to verify candidate models efficiently. MM can also design experiments to distinguish among multiple candidate models.
Resumo:
Regular physical exercise provides many health benefits, protecting against the development of chronic diseases, and improving quality of life. Some of the mechanisms by which exercise provides these effects are the promotion of an anti-inflammatory state, reinforcement of the neuromuscular function, and activation of the hypothalamic–pituitary–adrenal (HPA) axis. Recently, it has been proposed that physical exercise is able to modify gut microbiota, and thus this could be another factor by which exercise promotes well-being, since gut microbiota appears to be closely related to health and disease. The purpose of this paper is to review the recent findings on gut microbiota modification by exercise, proposing several mechanisms by which physical exercise might cause changes in gut microbiota.
Resumo:
D.J. Currie, M.H. Lee and R.W. Todd, 'Prediction of Physical Properties of Yeast Cell Suspensions using Dielectric Spectroscopy', Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP 2006), Annual Report, pp 672 ? 675, October 15th -18th 2006, Kansas City, Missouri, USA. Organised by IEEE Dielectrics and Electrical Insulation Society.
Resumo:
Depression is a major medical and social problem. Here we review current body of knowledge on the benefits of exercise as an effective strategy for both the prevention and treatment of this condition. We also analyze the biological pathways involved in such potential benefits, which include changes in neurotrophic factors, oxidative stress and inflammation, telomere length, brain volume and microvessels, neurotransmitters or hormones. We also identify major caveats in this field of research: further studies are needed to identify which are the most appropriate types of exercise interventions (intensity, duration, or frequency) to treat and prevent depression.
Resumo:
Increasing proportions of the global population are being diagnosed with diabetes. It is anticipated that by 2030, 10% of the adult population worldwide will be living with this condition. Lifestyle factors can impact on the development, management and progression of diabetes. Obesity and sedentary living are contributory factors to the increased volume of diabetes. Physical activity offers those living with diabetes the opportunities to keep well and attain potentially more stable blood glucose control reducing the level of medical intervention required and delaying or preventing some of the life-changing complications that can derive from a diabetes diagnosis. Exercise interventions are effective in preventing and treating type-II diabetes. However, maintaining regular exercise routines, especially home-based exercises may provide a key for sustaining the health benefits.
Resumo:
Children with disabilities are at greater risk of developing mental health problems than their peers, yet the emotional well-being of this group is largely overlooked and there is scant literature about children with a mobility disability. This study examined the retrospective experiences of growing up with mobility disability. The sample comprised of 16-25 year olds with mobility disability. A thematic analysis, informed by grounded theory was used. Themes identified included a common socio educational journey, conflict between care and independence in school and the impact of being singled out because of disability out side school. The result was a range of psycho-social issues that affected participants view of themselves and the world around them. The study also looked at what the participants found helpful in dealing with the emotional impact of their disability. Whilst some sought help through talking therapies, others found involvement in disability sport was helpful.
Resumo:
The influence of process variables (pea starch, guar gum and glycerol) on the viscosity (V), solubility (SOL), moisture content (MC), transparency (TR), Hunter parameters (L, a, and b), total color difference (ΔE), yellowness index (YI), and whiteness index (WI) of the pea starch based edible films was studied using three factors with three level Box–Behnken response surface design. The individual linear effect of pea starch, guar and glycerol was significant (p < 0.05) on all the responses. However, a value was only significantly (p < 0.05) affected by pea starch and guar gum in a positive and negative linear term, respectively. The effect of interaction of starch × glycerol was also significant (p < 0.05) on TR of edible films. Interaction between independent variables starch × guar gum had a significant impact on the b and YI values. The quadratic regression coefficient of pea starch showed a significant effect (p < 0.05) on V, MC, L, b, ΔE, YI, and WI; glycerol level on ΔE and WI; and guar gum on ΔE and SOL value. The results were analyzed by Pareto analysis of variance (ANOVA) and the second order polynomial models were developed from the experimental design with reliable and satisfactory fit with the corresponding experimental data and high coefficient of determination (R2) values (>0.93). Three-dimensional response surface plots were established to investigate the relationship between process variables and the responses. The optimized conditions with the goal of maximizing TR and minimizing SOL, YI and MC were 2.5 g pea starch, 25% glycerol and 0.3 g guar gum. Results revealed that pea starch/guar gum edible films with appropriate physical and optical characteristics can be effectively produced and successfully applied in the food packaging industry.
Resumo:
Concentrating solar power is an important way of providing renewable energy. Model simulation approaches play a fundamental role in the development of this technology and, for this, an accurately validation of the models is crucial. This work presents the validation of the heat loss model of the absorber tube of a parabolic trough plant by comparing the model heat loss estimates with real measurements in a specialized testing laboratory. The study focuses on the implementation in the model of a physical-meaningful and widely valid formulation of the absorber total emissivity depending on the surface’s temperature. For this purpose, the spectral emissivity of several absorber’s samples are measured and, with these data, the absorber total emissivity curve is obtained according to Planck function. This physical-meaningful formulation is used as input parameter in the heat loss model and a successful validation of the model is performed. Since measuring the spectral emissivity of the absorber surface may be complex and it is sample-destructive, a new methodology for the absorber’s emissivity characterization is proposed. This methodology provides an estimation of the absorber total emissivity, retaining its physical meaning and widely valid formulation according to Planck function with no need for direct spectral measurements. This proposed method is also successfully validated and the results are shown in the present paper.