991 resultados para Physical Adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a lattice model for adsorption in microporous materials, pure component adsorption isotherms are obtained within a mean field approximation for methane at 300 K and xenon at 300 and 360 K in zeolite NaA. It is argued that the increased repulsive adsorbate-adsorbate interactions at high coverages must play an important role in determining the adsorption behavior. Therefore, this feature is incorporated through a "coverage-dependent interaction'' model, which introduces a free, adjustable parameter. Another important feature, the site volume reduction, has been treated in two ways: a van der Waal model and a 1D hard-rod theory [van Tassel et al., AIChE J. 40, 925 (1994)]; we have also generalized the latter to include all possible adsorbate overlap scenarios. In particular, the 1D hard-rod model, with our coverage-dependent interaction model, is shown to be in best quantitative agreement with the previous grand canonical Monte Carlo isotherms. The expressions for the isosteric heats of adsorption indicate that attractive and repulsive adsorbate-adsorbate interactions increase and decrease the heats of adsorption, respectively. It is concluded that within the mean field approximation, our simple model for repulsive interactions and the 1D hard-rod model for site volume reduction are able to capture most of the important features of adsorption in confined regions. (C) 1999 American Institute of Physics. [S0021-9606(99)70515-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the prevalent mathematical description of the Poynting-Robertson effect is correct, its physical interpretation is sometimes problematic. By means of a two-parameter model, we revisit the effect in order to get a better physical understanding of it. The principal conclusion is that the motion of a dust in circumsolar orbit is governed only by solar radiation absorption and not by the asymmetry of reemission, even when viewed in the rest-frame of the Sun. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) onto alumina has been studied as a function of pH, both individually and in the presence of each other. The adsorption density of PAA is found to decrease with an increase of pH while that of PVA shows the opposite trend. In a binary system containing PAA and PVA, the presence of PVA does not affect the adsorption of PAA onto alumina, but the addition of PAA diminishes the adsorption of PVA in the pH range investigated. The adsorption isotherm of PAA at acidic pH exhibits high-affinity Langmuirian behavior. The isotherms for PVA appear rounded and are of the low-affinity type, Once again the adsorption isotherms of PAA remain unaltered in the presence of PVA whereas those of PVA are significantly affected resulting in a lowering of the adsorption density consequent to PAA addition. A variation in the sequence of addition of PAA and PVA does not affect the adsorption behavior of either of the polymers, The electrokinetic behavior of alumina with PAA is hardly influenced by the addition of PVA, On the other hand, the electrophoretic mobility of alumina in the presence of PVA is significantly altered in the presence of PAA and closely resembles the trend observed with PAA alone. Desorption studies reveal that over 80% of PVA could be desorbed in the pH range 3-9 whereas in the case of PAA, the percent desorption increases from 20 to about 70% as the pH is increased from about 3 to 8. Solution conductivity tests confirm interaction of aluminum species and PAA in the bulk solution. FTIR spectroscopic data provide evidence in support of hydrogen bonding and chemical interaction in the case of the PAA-alumina system and hydrogen bonding with respect to the PVA-alumina interaction. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI) is one of the most extensively used conjugated polymers in the design of electrochemical sensors. In this study, we report electrochemical dye detection based on PANI for the adsorption of both anionic and cationic dyes from solution. The inherent property of PANI to adsorb dyes has been explored for the development of electrochemical detection of dye in solution. The PANI film was grown on electrode via electrochemical polymerization. The as grown PANI film could easily adsorb the dye in the electrolyte solution and form an insulating layer on the PANI coated electrode. As a result, the current intensity of the PANI film was significantly altered. Furthermore, PANI coated stainless steel (SS) electrodes show a change in the current intensity of Fe2+/Fe3+ redox peaks due to the addition of dye in electrolyte solution. PANI films coated on both Pt electrodes and non-expensive SS electrodes showed the concentration of dye adsorbed is directly proportional to the current intensity or potential shift and thus can be used for the quantitative detection of textile dyes at very low concentrations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation calculates the surface tension and adsorption functions of the Fe-S, Fe-N, and Fe-S-N melts at 1823 K using the modified form of Butler's equations and the derived values of the surface interaction parameters of the systems. The calculated values are found to be in good agreement with those of the experimental data of the systems. The present analysis indicates similar adsorption behavior of sulfur for the Fe-S and Fe-S-N systems at 1823 K. Although a linear adsorption behavior is observed in the Fe-N system, an inverse relationship in the adsorption behavior exists between sulur and nitrogen in the Fe-S-N system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vapour adsorption refrigeration systems (VAdS) have the advantage of scalability over a wide range of capacities ranging from a few watts to several kilowatts. In the first instance, the design of a system requires the characteristics of the adsorbate-adsorbent pair. Invariably, the void volume in the adsorbent reduces the throughput of the thermal compressor in a manner similar to the clearance volume in a reciprocating compressor. This paper presents a study of the activated carbon +HFC-134a (1,1,1,2-tetrafluoroethane) system as a possible pair for a typical refrigeration application. The aim of this study is to unfold the nexus between the adsorption parameters, achievable packing densities of charcoal and throughput of a thermal compressor. It is shown that for a thermal compressor, the adsorbent should not only have a high surface area, but should also be able to provide a high packing density. Given the adsorption characteristics of an adsorbent-adsorbate pair and the operating conditions, this paper discloses a method for the calculation of the minimum packing density necessary for an effective throughput of a thermal compressor. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents adsorption isotherms for HFC-134a on activated charcoal, in the temperature range of 273-353 K and for pressures up to 0.65 MPa, measured using the volumetric method. Three samples of charcoals with widely varying surface areas were chosen. The shapes of the isotherms,obtained from the experimental data were similar in all cases and comparable to those reported in the literature. Adsorption parameters were evaluated from the isotherms using the Dubinin-Astakhov (DA) equation. The concentration dependence of the isosteric enthalpies of adsorption is extracted from the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic pollution of water is a major problem faced worldwide. Arsenic is a suspected carcinogen in human beings and is harmful to other living beings. In the present study, a novel adsorbent was used to remove arsenate [As(V)] from synthetic solutions. The adsorbent, which is a mixture of rare earth oxides, was found to adsorb As(V) rapidly and effectively. The effect of various parameters such as contact time, initial concentration, pH, and adsorbent dose on adsorption efficiency was investigated. More than 90% of the adsorption occurred within the first 10 min and the kinetic rate constant was found to be about 3.5 mg min(-1). Adsorption efficiency was found to be dependent on the initial As(V) concentration, and the adsorption behavior followed the Langmuir adsorption model. The optimum pH was found to be 6.5. The presence of other ions such as nitrate, phosphate, sulphate, and silicate decreased the adsorption of As(V) by about 20-30%. The adsorbed As(V) could be desorbed easily by washing the adsorbent with pH 12 solution. This study demonstrates the applicability of naturally occurring rare earth oxides as selective adsorbents for As(V) from solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of molecular films of 2,9,16,23-tetraamino metal phthalocyanines [TAM(II)Pc; M (II) = Co, Cu, and TAM(III)Pc; M = Fe] by spontaneous adsorption on gold and silver surfaces is described. The properties of these films have been investigated by cyclic voltammetry, impedance, and FT-Raman spectroscopy. The charge associated with Co(II) and Co(I) redox couple in voltammetric data leads to a coverage of (0.35+/-0.05) x 10(-10) mol cm(-2), suggesting that the tetraamino cobalt phthalocyanine is adsorbed as a monolayer with an almost complete coverage. The blocking behavior of the films toward oxygen and Fe(CN)(6)(3-/4-) redox couple have been followed by cyclic voltammetry and impedance measurements. This leads to an estimate of the coverage of about 85 % in the case of copper and the iron analogs. FT-Raman studies show characteristic bands around 236 cm(-1) revealing the interaction between the metal substrate and the nitrogen of the -NH2 group on the phthalocyanine molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and chemical environment of Cu in Cu/CeO2 catalysts synthesized by the solution combustion method have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and extended X-ray fine structure (EXAFS) spectroscopy. High-resolution XRD studies of 3 and 5 atom % Cu/CeO2 do not show CuO lines in their respective patterns. The structure could be refined for the composition Ce1-xCuxO2-delta (x = 0.03 and 0.05; delta similar to 0.13 and 0.16) in the fluorite structure with 5-8% oxide ion vacancy. High-resolution TEM did not show CuO particles in 5 atom % Cu/CeO2. EPR as well as XPS studies confirm the presence of Cu2+ species in the CeO2 matrix. Redox potentials of Cu species in the CeO2 matrix are lower than those in CuO. EXAFS investigations of these catalysts show an average coordination number of 3 around the Cu2+ ion in the first shell at a distance of 1.96 Angstrom, indicating the O2- ion vacancy around the Cu2+ ion. The Cu-O bond length also decreases compared to that in CuO. The second and third shell around the Cu2+ ion in the catalysts are attributed to -Cu2+-O2--Cu2+ - at 2.92 Angstrom and -Cu2+-O2--Ce4+- at the distance of 3.15 Angstrom, respectively. The present results provide direct evidence for the formation of a Ce1-xCuxO2-delta type of solid solution phase having -square-Cu2+-O-Ce4+- kind of linkages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noble metal ion substituted CeO(2) in the form of Ce(0.98)M(0.02)O(2-delta) solid solution (where M = Pt, Pd, Cu) are the new generation catalysts with applications in three-way exhaust catalysis. While adsorption of CO on noble metals ions is well-known, adsorption of CO on noble metal ions has not been studied because creating exclusive ionic sites has been difficult. Using first-principles density functional theory (DFT) we have shown that CO gets adsorbed on the noble metal Pt(2+), Pd(2+), Cu(2+) ionic sites in the respective compounds, and the net energy of the overall system decreases. Adsorption of CO on metal ions is also confirmed by Fourier transform infrared spectroscopy (FTIR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater constitutes a vital natural resource for sustaining India’s agricultural economy and meeting the country’s social, ecological and environmental goals. It is a unique resource, widely available, providing security against droughts and yet it is closely linked to surface-water resources and the hydrological cycle. Its availability depends on geo-hydrological conditions and characteristics of aquifers, from deep to alluvium, sediment crystalline rocks to basalt formations; and agro-climate from humid to subhumid and semi-arid to arid. Its reliable supply, uniform quality and temperature, relative turbidity, pollution-safe, minimal evaporation losses, and low cost of development are attributes making groundwater more attractive compared to other resources. It plays a key role in the provision of safe drinking water to rural populations. For example, already almost 80% of domestic water use in rural areas in India is groundwater-supplied, and much of it is being supplied to farms, villages and small towns. Inadequate control of the use of groundwater, indiscriminate application of agrochemicals and unrestrained pollution of the rural environment by other human activities make groundwater usage unsustainable, necessitating proper management in the face of the twin demand for water of good quality for domestic supply and adequate supply for irrigation, ensuring equity, efficiency and sustainability of the resource. Groundwater irrigation has overtaken surface irrigation in the early 1980s, supported by well energization. It is estimated that there are about 24 million energised wells and tube wells now and it is driven by demand rather than availability, evident through the greater occurrence of wells in districts with high population densities. Apart from aquifer characteristics, land fragmentation and landholding size are the factors that decide the density of wells. The ‘rise and fall’ of local economies dependent on groundwater can be summarized as: the green revolution of 1980s, groundwaterbased agrarian boom, early symptoms of groundwater overdraft, and decline of the groundwater socio-ecology. The social characteristics and policy interventions typical of each stage provide a fascinating insight into the human-resource dynamics. This book is a compilation of nine research papers discussing various aspects of groundwater management. It attempts to integrate knowledge about the physical system, the socio-economic system, the institutional set-up and the policy environment to come out with a more realistic analysis of the situation with regard to the nature, characteristics and intensity of resource use, the size of the economy the use generates, and the negative socioeconomic consequences. Complex variables addressed in this regard focusing on northern Gujarat are the stock of groundwater available in the region, its hydrodynamics, its net outflows against inflows, the economics of its intensive use (particularly irrigation in semi-arid and arid regions), its criticality in the regional hydroecological regime, ethical aspects and social aspects of its use. The first chapter by Dinesh Kumar and Singh, dwells on complex groundwater socio-ecology of India, while emphasizing the need for policy measures to address indiscriminate over-exploitation of dwindling resources. The chapter also explores the nature of groundwater economy and the role of electricity prices on it. The next chapter on groundwater issue in north Gujarat provides a description of groundwater resource characteristics followed by a detailed analysis of the groundwater depletion and quality deterioration problems in the region and their undesirable consequences on the economy, ecosystem health and the society. Considering water-buyers and wellowning farmers individually, a methodology for economic valuation of groundwater in regions where its primary usage is in agriculture, and as assessment of the groundwater economy based on case studies from north Gujarat is presented in the fourth chapter. The next chapter focuses on the extent of dependency of milk production on groundwater, which includes the water embedded in green and dry fodder and animal feed. The study made a realistic estimate of irrigation water productivity in terms of the physics and economics of milk production. The sixth chapter analyses the extent of reduction in water usage, increase in yield and overall increase in physical productivity of alfalfa with the use of the drip irrigation system. The chapter also provides a detailed synthesis of the costs and benefits associated with the use of drip irrigation systems. A linear programmingbased optimization model with the objective to minimize groundwater use taking into account the interaction between two distinct components – farming and dairying under the constraints of food security and income stability for different scenarios, including shift in cropping pattern, introduction of water-efficient crops, water- saving technologies in addition to the ‘business as usual’ scenario is presented in the seventh chapter. The results show that sustaining dairy production in the region with reduced groundwater draft requires crop shifts and adoption of water-saving technologies. The eighth chapter provides evidences to prove that the presence of adequate economic incentive would encourage farmers to adopt water-saving irrigation devices, based on the findings of market research with reference to the level of awareness among farmers of technologies and the factors that decide the adoption of water-saving technologies. However, now the marginal cost of using electricity for agricultural pumping is almost zero. The economic incentives are strong and visible only when the farmers are either water-buyers or have to manage irrigation with limited water from tube-well partnerships. The ninth chapter explores the socio-economic viability of increasing the power tariff and inducing groundwater rationing as a tool for managing energy and groundwater demand, considering the current estimate of the country’s annual economic loss of Rs 320 billion towards electricity subsidy in the farm sector. The tenth chapter suggests private tradable property rights and development of water markets as the institutional tool for achieving equity, efficiency and sustainability of groundwater use. It identifies the externalities for local groundwater management and emphasizes the need for managing groundwater by local user groups, supported by a thorough analysis of groundwater socio-ecology in India. An institutional framework for managing the resource based on participatory approach that is capable of internalizing the externalities, comprising implementation of institutional and technical alternatives for resource management is also presented. Major findings of the analyses and key arguments in each chapter are summarized in the concluding chapter. Case studies of the social and economic benefits of groundwater use, where that use could be described as unsustainable, are interesting. The benefits of groundwater use are outlined and described with examples of social and economic impacts of groundwater and the negative aspects of groundwater development with the compilation of environmental problems based on up-to-date research results. This publication with a well-edited compilation of case studies is informative and constitutes a useful publication for students and professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene gas is burnt and the soot generated is sampled thermophoretically at different heights along the flame axis starting from a region close to the root of the flame. The morphology and crystallinity of the particle are recorded using high resolution transmission electron microscopes. The hardness of a single particle is measured using a nanoindenter. The frictional resistance and material removal of a particle are measured using an atomic force microscope. The particles present in the mid-flame region are found to have a crystalline shell. The ones at the flame root are found to be highly disordered and the ones at the flame tip and above have randomly distributed pockets of short range order. The physical state of a particle is found to relate, but not very strongly, with the mechanical and tribological properties of the particles.