985 resultados para Photocatalytic oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toluene- and naphthalene-dioxygenase-catalysed sulfoxidation of nine disubstituted methylphenyl sulfides, using whole cells of Pseudomonas putida, consistently gave the corresponding enantioenriched sulfoxides. Using the P. putida UV4 mutant strain, and these substrates, differing proportions of the corresponding cis-dihydrodiol sulfides were also isolated. Evidence was found for the concomitant dioxygenase-catalysed cis-dihydroxylation and sulfoxidation of methyl paratolyl sulfide. A simultaneous stereoselective reductase-catalysed deoxygenation of (S)-methyl para-tolyl sulfoxide, led to an increase in the proportion of the corresponding cis-dihydrodiol sulfide. The enantiopurity values and absolute configurations of the corresponding cis-dihydrodiol metabolites from methyl ortho-and para-substituted phenyl sulfides were determined by different methods, including chemoenzymatic syntheses from the cis-dihydrodiol metabolites of para-substituted iodobenzenes. Further evidence was provided to support the validity of an empirical model to predict, (i) the stereochemistry of cis-dihydroxylation of para-substituted benzene substrates, and (ii) the regiochemistry of cis-dihydroxylation reactions of ortho-substituted benzenes, each using toluene dioxygenase as biocatalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of porous films directly deposited onto the surface of catalyst particles is attracting increasing attention. We report here for the first time a method that can be carried out at ambient pressure for the preparation of porous films deposited over 3 mm diameter catalyst particles of silica-supported Pt-Fe. Characterization of the sample prepared at ambient pressure (i.e., open air, OA) and its main structural differences as compared with a Na-A (LTA) coated catalyst made using an autoclave-based method are presented. The OA-coated material predominantly exhibited an amorphous film over the catalyst surface with between 4 and 13% of crystallinity as compared with fully crystallized LTA zeolite crystals. This coated sample was highly selective for CO oxidation in the presence of butane with no butane oxidation observed up to 350 degrees C. This indicates, for the first time, that the presence of a crystalline membrane is not necessary for the difference in light off temperature between CO and butane to be achieved and that amorphous films may also produce this effect. An examination of the space velocity dependence and adsorption of Na+ on the catalysts indicates that the variation in CO and butane oxidation activity is not caused by site blocking predominantly, although the Pt activity was lowered by contact with this alkali.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of hydrogen was studied at an activated platinum micro-electrode by cyclic voltammetry in the following ionic liquids: [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6.2.2.2][NTf2], [P-14.6.6.6][NTf2], [C(4)mim][OTf], [C(4)mim][BF4] [C(4)mim][PF6], [C(4)mim][NO3], [C(6)mim]Cl and [C(6)mim][FAP] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [N-6,N-2,N-2,N-2](+) = n-hexyltriethylammonium, [P-14,P-6,P-6,P-6](+) = tris(n-hexyltetradecyl) phosphonium, [NTf2](-) = bis(trifluoromethylsulfonyl)amide, [OTf] = trifluoromethlysulfonate and [FAP](-) = tris(perfluoroethyl)trifluorophosphate). Activation of the Pt electrode was necessary to obtain reliable and reproducible voltammetry. After activation of the electrode, the H-2 oxidation waves were nearly electrochemically and chemically reversible in [C(n)mim][NTf2] ionic liquids, chemically irreversible in [C(6)mim]Cl and [C(4)mim][NO3], and showed intermediate characteristics in OTf-, [BF4](-), [PF6](-), [FAP](-) and other [NTf2](-)-based ionic liquids. These differences reflect the contrasting interactions of protons with the respective RTIL anions. The oxidation peaks are reported relative to the half-wave potential of the cobaltocenium/cobaltocene redox couple in all ionic liquids studied, giving an indication of the relative proton interactions of each ionic liquid. A preliminary temperature study (ca. 298-333 K) has also been carried out in some of the ionic liquids. Diffusion coefficients and solubilities of hydrogen at 298 K were obtained from potential-step chronoamperometry, and there was no relationship found between the diffusion coefficients and solvent viscosity. RTILs possessing [NTf2](-) and [FAP](-) anions showed the highest micro-electrode peak currents for the oxidation in H-2 saturated solutions, with[C(4)mim][NTf2] toeing the most sensitive. The large number of available RTIL anion/cation pairs allows scope for the possible electrochemical detection of hydrogen gas for use in gas sensor technology. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) has been studied by cyclic voltammetry and potential step chronoamperometry at 303 K in five ionic liquids, namely [C(2)mim] [NTf2], [C(4)mim] [NTf2] [C(4)mpyrr] [NTf2] [C(4)mim] [BF4], and [C(4)mim] [PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [BF4](-) = tetrafluoroborate, and [PF6](-) = hexafluorophosphate). Diffusion coefficients, D, of 4.87, 3.32, 2.05, 1.74, and 1.34 x 10(-11) m(2) s(-1) and heterogeneous electron-transfer rate constants, k(0), of 0.0109, 0.0103, 0.0079, 0.0066, and 0.0059 cm s(-1) were calculated for TMPD in [C(2)mim] [NTf2], [C(4)mim] [NTf2], [C(4)mpyrr] [NTf2], [C(4)mim] [BF4], and [C(4)mim] [PF6], respectively, at 303 K. The oxidation of TMPD in [C4mim][PF6] was also carried out at increasing temperatures from 303 to 343 K, with an activation energy for diffusion of 32.3 kJ mol(-1). k(0) was found to increase systematically with increasing temperature, and an activation energy of 31.4 kJ mol(-1) was calculated. The study was extended to six other p-phenylenediamines with alkyl/phenyl group substitutions. D and k(0) values were calculated for these compounds in [C(2)mim] [NTf2], and it was found that k(0) showed no obvious relationship with the hydrodynamic radius, r.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanistic study of the direct oxidation of ammonia has been reported in several room-temperature ionic liquids (RTILs), namely, [C(4)mim][BF4], [C(4)mim][OTf], [C(2)mim][NTf2], [C(4)mim][NTf2], and [C(4)mim][PF6], on a 10 mu m diameter Pt microdisk electrode. In four of the RTILs studied, the cyclic voltammetric analysis suggests that ammonia is initially oxidized to nitrogen, N-2, and protons, which are transferred to an ammonia molecule, forming NH4+ via the protonation of the anion(s) (A(-)). In contrast, NH4+ is formed first in [C(4)mim][PF6], followed by the protonated anion(s), HA. In all five RTILs, both HA and NH4+ are reduced at the electrode surface, forming hydrogen gas, which is then oxidized. The effect of changing the RTIL anion is discussed, and this may have implications in the defining of pK(a) in RTIL media. This work also has implications in the possible amperometric sensing of ammonia gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of potassium nitrite has been studied in the room temperature ionic liquid (RTIL) [C(2)mim][NTf2] by cyclic voltammetry at platinum electrodes. A chemically irreversible oxidation peak was observed, and a solubility of 7.5(+/- 0.5) mM and diffusion coefficient of 2.0(+/- 0.2) x 10(-11) m(2) s(-1) were calculated from potential step chronoamperometry on the microdisk electrode. A second, and sometimes third, oxidation peak was also observed when the anodic limit was extended, and these were provisionally assigned to the oxidation of nitrogen dioxide (NO2) and nitrate (NO3-), respectively. The electrochemical oxidation of nitrogen dioxide gas (NO2) was also studied by cyclic voltammetry in [C(2)mim][NTf2] on Pt electrodes of various size, giving a solubility of ca. 51(+/- 0.2) mM and diffusion coefficient of 1.6(+/- 0.05) x 10(-10) m(2) s(-1) (at 25 degrees C). It is likely that NO2 exists predominantly as its dimer, N2O4, at room temperature. The oxidation mechanism follows a CE process, which involves the initial dissociation of the dimer to the monomer, followed by a one-electron oxidation. A second, larger oxidation peak was observed at more positive potentials and is thought to be the direct oxidation of N2O4. In addition to understanding the mechanisms of NO2- and NO2 oxidations, this work has implications in the electrochemical detection of nitrite ions and of NO2 gas in RTIL media, the latter which may be of particular use in gas sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery of a series of Au-based catalysts by Haruta et al. considerable progress has been made in understanding the active role of Au in CO oxidation catalysis. This review provides a summary of recent theoretical work performed in this field; in particular it addresses DFT studies of CO oxidation catalysis over free and supported gold nanoparticles. Several properties of the Au particles have been found to contribute to their unique catalytic activity. Of these properties, the low-coordination state of the Au atoms is arguably the most pertinent, although other properties of the Au cluster atoms, such as electronic charge, cannot be ignored. The current consensuses regarding the mechanism for CO oxidation over Au-based catalysts is also discussed. Finally, water-enhanced catalysis of CO oxidation on Au clusters is summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of dissolved hydrogen gas has been studied in a range of room-temperature ionic liquids (RTILs), namely [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6,N-2,N-2,N-2][NTf2], [P-14,P-6,P-6,P-6][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], [C(4)mim][OTf], and [C(6)mim]Cl on a platinum microdisk electrode of diameter 10 mu m. In all cases, except [C(6)mim]Cl, a broad quasi-electrochemically reversible oxidation peak between 0.3 to 1.3 V vs Ag was seen prior to electrode activation ([C(6)mim]Cl showed an almost irreversible wave). When the electrode was pre-anodized (