952 resultados para Periodic nanostructures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the behavior of solutions of the Poisson equation with homogeneous Neumann boundary conditions in a two-dimensional thin domain which presents locally periodic oscillations at the boundary. The oscillations are such that both the amplitude and period of the oscillations may vary in space. We obtain the homogenized limit problem and a corrector result by extending the unfolding operator method to the case of locally periodic media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present topological derivative and energy based procedures for the imaging of micro and nano structures using one beam of visible light of a single wavelength. Objects with diameters as small as 10 nm can be located and their position tracked with nanometer precision. Multiple objects dis-tributed either on planes perpendicular to the incidence direction or along axial lines in the incidence direction are distinguishable. More precisely, the shape and size of plane sections perpendicular to the incidence direction can be clearly determined, even for asymmetric and nonconvex scatterers. Axial resolution improves as the size of the objects decreases. Initial reconstructions may proceed by gluing together two-dimensional horizontal slices between axial peaks or by locating objects at three-dimensional peaks of topological energies, depending on the effective wavenumber. Below a threshold size, topological derivative based iterative schemes improve initial predictions of the lo-cation, size, and shape of objects by postprocessing fixed measured data. For larger sizes, tracking the peaks of topological energy fields that average information from additional incident light beams seems to be more effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of identical droplets of controllable size in the micrometer range is a problem of much interest owing to the numerous technological applications of such droplets. This work reports an investigation of the regime of periodic emission of droplets from an electrified oscillating meniscus of a liquid of low viscosity and high electrical conductivity attached to the end of a capillary tube, which may be used to produce droplets more than ten times smaller than the diameter of the tube. To attain this periodic microdripping regime, termed axial spray mode II by Juraschek and Röllgen [R. Juraschek and F. W. Röllgen, Int. J. Mass Spectrom. 177, 1 (1998)], liquid is continuously supplied through the tube at a given constant flow rate, while a dc voltage is applied between the tube and a nearby counter electrode. The resulting electric field induces a stress at the surface of the liquid that stretches the meniscus until, in certain ranges of voltage and flow rate, it develops a ligament that eventually detaches, forming a single droplet, in a process that repeats itself periodically. While it is being stretched, the ligament develops a conical tip that emits ultrafine droplets, but the total mass emitted is practically contained in the main droplet. In the parametrical domain studied, we find that the process depends on two main dimensionless parameters, the flow rate nondimensionalized with the diameter of the tube and the capillary time, q, and the electric Bond number BE, which is a nondimensional measure of the square of the applied voltage. The meniscus oscillation frequency made nondimensional with the capillary time, f, is of order unity for very small flow rates and tends to decrease as the inverse of the square root of q for larger values of this parameter. The product of the meniscus mean volume times the oscillation frequency is nearly constant. The characteristic length and width of the liquid ligament immediately before its detachment approximately scale as powers of the flow rate and depend only weakly on the applied voltage. The diameter of the main droplets nondimensionalized with the diameter of the tube satisfies dd≈(6/π)1/3(q/f)1/3, from mass conservation, while the electric charge of these droplets is about 1/4 of the Rayleigh charge. At the minimum flow rate compatible with the periodic regimen, the dimensionless diameter of the droplets is smaller than one-tenth, which presents a way to use electrohydrodynamic atomization to generate droplets of highly conducting liquids in the micron-size range, in marked contrast with the cone-jet electrospray whose typical droplet size is in the nanometric regime for these liquids. In contrast with other microdripping regimes where the mass is emitted upon the periodic formation of a narrow capillary jet, the present regime gives one single droplet per oscillation, except for the almost massless fine aerosol emitted in the form of an electrospray.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A controlled synthesis of CuO nanostructures with various morphologies were successfully achieved by presence/absence of low frequency (42 kHz) ultrasound with two different methods. The size, shape and morphology of the CuO nanostructures were tailored by altering the ultrasound, mode of addition and solvent medium. The crystalline structure and molecular vibrational modes of the prepared nanostructures were analysed through X-ray diffraction and FTIR measurement, respectively which confirmed that the nanostructures were phase pure high-quality CuO with monoclinic crystal structure. The morphological evaluation and elemental composition analysis were done using TEM and EDS attached with SEM, respectively. Furthermore, we demonstrated that the prepared CuO nanostructures could be served as an effective photocatalyst towards the degradation of methyl orange (MO) under visible light irradiation. Among the various nanostructures, the spherical shape CuO nanostructures were found to have the better catalytic activities towards MO dye degradation. The catalytic degradation performance of MO in the presence of CuO nanostructures showed the following order: spherical\nanorod \layered oval \nanoleaf \triangular \shuttles structures. The influence of loading and reusability of catalyst revealed that the efficiency of visible light assisted degradation of MO was effectively enhanced and more than 95 % of degradation was achieved after 3 cycles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size and shape tuneable ZnO nanostructures were prepared by a low frequency ultrasound (42 kHz) route using various organic solvents as the reaction media. The crystalline nature, lattice parameters and microstructural parameters such as microstrain, stress and energy density of the prepared ZnO nanostructures were revealed through X-ray diffraction (XRD) analysis. The organic solvents influenced the size and morphology of the ZnO nanostructures, and interesting morphological changes involving a spherical to triangular shaped transition were observed. The visible emission properties and lattice vibrational characteristics of the nanostructures were drastically modified by the changes in size and shape. Raman spectral measurements revealed the presence of multiphonon processes in the ZnO nanostructures. The intensity of the visible emission band was found to vary with the size and morphology of the structures. The strongest visible emission band corresponded to the structure with the largest surface/volume ratio and could be attributed to surface oxygen vacancies. The control over the size and morphology of ZnO nanostructures has been presented as a means of determining the intensity of the visible emission band

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pronounced electrocatalytic oxidation enhancement at the surface of InGaN layers and nanostructures directly grown on Si by plasma-assisted molecular beam epitaxy is demonstrated. The oxidation enhancement, probed with the ferro/ferricyanide redox couple increases with In content and proximity of nanostructure surfaces and sidewalls to the c-plane. This is attributed to the corresponding increase of the density of intrinsic positively charged surface donors promoting electron transfer. Strongest enhancement is for c-plane InGaN layers functionalized with InN quantum dots (QDs). These results explain the excellent performance of our InN/InGaN QD biosensors and water splitting electrodes for further boosting efficiency.