996 resultados para Payment Networks


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.

Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.

Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.

Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.

Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.

Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.

Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.

The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis belongs to the growing field of economic networks. In particular, we develop three essays in which we study the problem of bargaining, discrete choice representation, and pricing in the context of networked markets. Despite analyzing very different problems, the three essays share the common feature of making use of a network representation to describe the market of interest.

In Chapter 1 we present an analysis of bargaining in networked markets. We make two contributions. First, we characterize market equilibria in a bargaining model, and find that players' equilibrium payoffs coincide with their degree of centrality in the network, as measured by Bonacich's centrality measure. This characterization allows us to map, in a simple way, network structures into market equilibrium outcomes, so that payoffs dispersion in networked markets is driven by players' network positions. Second, we show that the market equilibrium for our model converges to the so called eigenvector centrality measure. We show that the economic condition for reaching convergence is that the players' discount factor goes to one. In particular, we show how the discount factor, the matching technology, and the network structure interact in a very particular way in order to see the eigenvector centrality as the limiting case of our market equilibrium.

We point out that the eigenvector approach is a way of finding the most central or relevant players in terms of the “global” structure of the network, and to pay less attention to patterns that are more “local”. Mathematically, the eigenvector centrality captures the relevance of players in the bargaining process, using the eigenvector associated to the largest eigenvalue of the adjacency matrix of a given network. Thus our result may be viewed as an economic justification of the eigenvector approach in the context of bargaining in networked markets.

As an application, we analyze the special case of seller-buyer networks, showing how our framework may be useful for analyzing price dispersion as a function of sellers and buyers' network positions.

Finally, in Chapter 3 we study the problem of price competition and free entry in networked markets subject to congestion effects. In many environments, such as communication networks in which network flows are allocated, or transportation networks in which traffic is directed through the underlying road architecture, congestion plays an important role. In particular, we consider a network with multiple origins and a common destination node, where each link is owned by a firm that sets prices in order to maximize profits, whereas users want to minimize the total cost they face, which is given by the congestion cost plus the prices set by firms. In this environment, we introduce the notion of Markovian traffic equilibrium to establish the existence and uniqueness of a pure strategy price equilibrium, without assuming that the demand functions are concave nor imposing particular functional forms for the latency functions. We derive explicit conditions to guarantee existence and uniqueness of equilibria. Given this existence and uniqueness result, we apply our framework to study entry decisions and welfare, and establish that in congested markets with free entry, the number of firms exceeds the social optimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underlying matter and light are their building blocks of tiny atoms and photons. The ability to control and utilize matter-light interactions down to the elementary single atom and photon level at the nano-scale opens up exciting studies at the frontiers of science with applications in medicine, energy, and information technology. Of these, an intriguing front is the development of quantum networks where N >> 1 single-atom nodes are coherently linked by single photons, forming a collective quantum entity potentially capable of performing quantum computations and simulations. Here, a promising approach is to use optical cavities within the setting of cavity quantum electrodynamics (QED). However, since its first realization in 1992 by Kimble et al., current proof-of-principle experiments have involved just one or two conventional cavities. To move beyond to N >> 1 nodes, in this thesis we investigate a platform born from the marriage of cavity QED and nanophotonics, where single atoms at ~100 nm near the surfaces of lithographically fabricated dielectric photonic devices can strongly interact with single photons, on a chip. Particularly, we experimentally investigate three main types of devices: microtoroidal optical cavities, optical nanofibers, and nanophotonic crystal based structures. With a microtoroidal cavity, we realized a robust and efficient photon router where single photons are extracted from an incident coherent state of light and redirected to a separate output with high efficiency. We achieved strong single atom-photon coupling with atoms located ~100 nm near the surface of a microtoroid, which revealed important aspects in the atom dynamics and QED of these systems including atom-surface interaction effects. We present a method to achieve state-insensitive atom trapping near optical nanofibers, critical in nanophotonic systems where electromagnetic fields are tightly confined. We developed a system that fabricates high quality nanofibers with high controllability, with which we experimentally demonstrate a state-insensitive atom trap. We present initial investigations on nanophotonic crystal based structures as a platform for strong atom-photon interactions. The experimental advances and theoretical investigations carried out in this thesis provide a framework for and open the door to strong single atom-photon interactions using nanophotonics for chip-integrated quantum networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents theories, analyses, and algorithms for detecting and estimating parameters of geospatial events with today's large, noisy sensor networks. A geospatial event is initiated by a significant change in the state of points in a region in a 3-D space over an interval of time. After the event is initiated it may change the state of points over larger regions and longer periods of time. Networked sensing is a typical approach for geospatial event detection. In contrast to traditional sensor networks comprised of a small number of high quality (and expensive) sensors, trends in personal computing devices and consumer electronics have made it possible to build large, dense networks at a low cost. The changes in sensor capability, network composition, and system constraints call for new models and algorithms suited to the opportunities and challenges of the new generation of sensor networks. This thesis offers a single unifying model and a Bayesian framework for analyzing different types of geospatial events in such noisy sensor networks. It presents algorithms and theories for estimating the speed and accuracy of detecting geospatial events as a function of parameters from both the underlying geospatial system and the sensor network. Furthermore, the thesis addresses network scalability issues by presenting rigorous scalable algorithms for data aggregation for detection. These studies provide insights to the design of networked sensing systems for detecting geospatial events. In addition to providing an overarching framework, this thesis presents theories and experimental results for two very different geospatial problems: detecting earthquakes and hazardous radiation. The general framework is applied to these specific problems, and predictions based on the theories are validated against measurements of systems in the laboratory and in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN --- the Community Seismic Network --- which uses relatively low-cost sensors deployed by members of the community, and (2) SAF --- the Situation Awareness Framework --- which integrates data from multiple sources, including the CSN, CISN --- the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California --- and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.