992 resultados para Partially coherent beams
Design proposals for the debonding strengths of FRP strengthened RC beams in the Chinese design code
Resumo:
Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10 4 times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure.
Resumo:
Context. We investigate the growth of hydromagnetic waves driven by streaming cosmic rays in the precursor environment of a supernova remnant shock.
Aims. It is known that transverse waves propagating parallel to the mean magnetic field are unstable to anisotropies in the cosmic ray distribution, and may provide a mechanism to substantially amplify the ambient magnetic field. We quantify the extent to which temperature and ionisation fractions modify this picture.
Methods. Using a kinetic description of the plasma we derive the dispersion relation for a collisionless thermal plasma with a streaming cosmic ray current. Fluid equations are then used to discuss the effects of neutral-ion collisions.
Results. We calculate the extent to which the environment into which the cosmic rays propagate influences the growth of the magnetic field, and determines the range of possible growth rates.
Conclusions. If the cosmic ray acceleration is efficient, we find that very large neutral fractions are required to stabilise the growth of the non-resonant mode. For typical supernova parameters in our Galaxy, thermal effects do not significantly alter the growth rates. For weakly driven modes, ion-neutral damping can dominate over the instability at more modest ionisation fractions. In the case of a supernova shock interacting with a molecular clouds, such as in RX J1713.7-3946, with high density and low ionisation, the modes can be rapidly damped.
Resumo:
Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility. © 2013 SPIE.
Resumo:
Gabions are stone-filled wire containers which are frequently used as retaining walls. However, due to their high mass, relatively low cost and visual appeal, a row of single gabion blocks, joined at the ends, has the potential to be used as a roadside impact absorption device where traditional steel or concrete devices may not be suitable. To evaluate such application, the shear and bending deformation of gabions under vehicle impact need to be investigated. In this paper, the shear response of a single gabion block is analytically modelled and a gabion beam multibody model is developed using a discretisation method to capture the deformability of the gabion structure. The material properties of the gabion beam are adopted from experimental values available in the literature and the modelling is statically validated over a three-point bending test and a distributed loading test. The results show that the discretised multibody modelling can be effectively used to describe the static deformation behaviour of gabion blocks.
Resumo:
Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/µm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.
Resumo:
Composite beams with large web openings are often used, and their design is controlled by Vierendeel bending at the four corners of each opening, which is assisted by local composite action with the floor slab. Development of this Vierendeel bending resistance may be limited by pull-out failure of the shear connectors. In this paper, a non-linear elasto-plastic finite element model of a composite beam with web openings was used to investigate this mode of pull-out failure. A test was performed on a typical composite slab in which the shear connectors were subject to pure tension and the failure load was 67 kN, which is approximately 70% of the longitudinal shear resistance. The results of the finite element model are compared against those obtained using the established design theory, that does not limit the vertical pull-out resistance of the shear connectors. It is shown that the local bending resistance due to composite action should be reduced when limited by pull-out of the shear connectors. A parametric study investigated the effect of openings of 600 to 1200 mm length. A simple model is developed to establish the Vierendeel bending resistance, when limited by pull-out of the shear connectors.
Resumo:
Freestanding BaTiO3 nanodots exhibit domain structures characterized by distinct quadrants of ferroelastic 90 domains in transmission electron microscopy (TEM) observations. These differ significantly from flux-closure domain patterns in the same systems imaged by piezoresponse force microscopy. Based upon a series of phase field simulations of BaTiO3 nanodots, we suggest that the TEM patterns result from a radial electric field arising from electron beam charging of the nanodot. For sufficiently large charging, this converts flux-closure domain patterns to quadrant patterns with radial net polarizations. Not only does this explain the puzzling patterns that have been observed in TEM studies of ferroelectric nanodots, but also suggests how to manipulate ferroelectric domain patterns via electron beams.
Resumo:
The scenario of electron capture and loss has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.
Resumo:
We present observations of intense beams of energetic negative hydrogen ions and fast neutral hydrogen atoms in intense (5 × 10 W/cm) laser plasma interaction experiments, which were quantified in numerical calculations. Generation of negative ions and neutral atoms is ascribed to the processes of electron capture and loss by a laser accelerated positive ion in the collisions with a cloud of droplets. A comparison with a numerical model of charge exchange processes provides information on the cross section of the electron capture in the high energy domain.
Resumo:
The generation of ultrarelativistic positron beams with short duration (τe+≃30 fs), small divergence (θe+≃3 mrad), and high density (n e+≃1014-1015 cm-3) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.
Resumo:
We report on recent experimental results concerning the generation of collimated (divergence of the order of a few mrad) ultra-relativistic positron beams using a fully optical system. The positron beams are generated exploiting a quantum-electrodynamic cascade initiated by the propagation of a laser-accelerated, ultra-relativistic electron beam through high-Z solid targets. As long as the target thickness is comparable to or smaller than the radiation length of the material, the divergence of the escaping positron beam is of the order of the inverse of its Lorentz factor. For thicker solid targets the divergence is seen to gradually increase, due to the increased number of fundamental steps in the cascade, but it is still kept of the order of few tens of mrad, depending on the spectral components in the beam. This high degree of collimation will be fundamental for further injection into plasma-wakefield afterburners.
Resumo:
The research reports on a survey of 228 blind and partially sighted persons in 15 health authorities across Scotland. The survey reports data on patient experience of receiving health information in accessible reading formats. Data indicated that about 90% of blind and partially sighted persons did not receive communications from various NHS health departments in a format that they could read by themselves. The implications for patient privacy, confidentiality and wider impact on life and health care are highlighted. The implications for professional ethical medical practice and for public policy are also discussed. Recommendations for improved practice are made.