967 resultados para Packing-houses
Resumo:
Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.
Resumo:
Tämän kandidaatintutkielman tarkoituksena on analysoida miten vuonna 2008 alkanut finanssikriisi ja sen aiheuttama taloudellinen epävarmuus ovat vaikuttaneet Nasdaq OMX Helsingin pörssiin listattujen kulutuspalveluita tuottavien yritysten suorituskykyyn. Näiden yritysten suorituskykyä analysoitiin tarkemmin tarkastelemalla kannattavuuden, maksuvalmiuden ja vakavaraisuuden tunnuslukuja aikavälillä 2008-2014. Tutkimuksen tavoitteena oli selvittää, minkälaisia muutoksia suorituskyvyn suhteen tutkitulla aikavälillä oli tapahtunut kulutuspalveluita tuottavien yritysten keskuudessa. Muutoksia analysoitiin sekä kokonaisuutena että yrityskohtaisesti. Lisäksi tutkittiin, miten kulutuspalveluryhmän sisäiset toimialat olivat selviytyneet finanssikriisistä. Käsiteltävää yritysryhmää analysoitiin tunnuslukuanalyysiä hyödyntäen. Saatujen tulosten mukaan finanssikriisillä ei ollut suurta vaikutusta käsiteltävien yritysten maksuvalmiuteen tai vakavaraisuuteen. Kannattavuuden tunnusluvut sen sijaan heikkenivät merkittävästi koko ryhmän osalta finanssikriisin vaikutuksesta. Yrityskohtaiset erot olivat tutkimuksessa melko suuria. Etenkin mediayhtiöiden tunnusluvut heikkenivät merkittävästi tutkitulla aikavälillä. Mediayhtiöiden huonoon suoriutumiseen liittyy finanssikriisin lisäksi muitakin tekijöitä. Median digitalisoituminen on aiheuttanut useille yrityksille ongelmia liiketoiminnan kannattavuuden ylläpitämisessä. Monet tutkituista yrityksistä ovat kuitenkin pystyneet kääntämään liiketoimintansa kannattavampaan suuntaan vuoden 2013 jälkeen. Johtopäätöksenä voidaankin vetää, että viimeisin finanssikriisi oli vaikutuksiltaan merkittävä ja pitkäkestoinen.
Resumo:
The growth of the food packaging industry has raised more interest in bio-based fibre packing. The use of petroleum based packages is unfriendly to the environment while bio-based is a sustainable option for food packing. In this Master Thesis the aim was to discover how the press forming machineries runnability is affected by parameters of the press and how it also affects formability of paperboard trays. Familiarisation of the working operation parameters was done with the KAMA ST 75 flat-bed die cutting machine and the VP3-70 mould press. Some small test runs of moulding trays where done to get acquainted to the adjustment parameters of the machines. Literature study was done on how paperboards physical properties react to the forces applied during press forming. The study of what kind of defects to the paperboard tray might occur during forming process and the causes for these defects. Also how the parameters of the press forming machine affects formability of the tray. Maintenance procedures was done to the press forming machine to enhance the reliably of production process. Tool alignment measurement was done to determine proper alignment. Laboratory test of the physical properties of the test material was done to find any connection to how the test material performs in press forming. An evaluation criterion was made to evaluate the dimensions and defects of the tray. From the test result a conclusion can be drawn on how the parameters of the press forming process affect the paperboard material. Based on the results the adjustment the parameters of moulding machines to the mechanical properties of paperboard it is possible to produce high quality fibre passed trays for the food packaging industry.
Resumo:
Référence bibliographique : Rol, 59231
Resumo:
Référence bibliographique : Rol, 59232
Resumo:
The capability of molecular mechanics for modeling the wide distribution of bond angles and bond lengths characteristic of coordination complexes was investigatecl. This was the preliminary step for future modeling of solvent extraction. Several tin-phosphine oxide COrnI)le:){es were selected as the test groUl) for t.he d,esired range of geometry they eX!libi ted as \-vell as the ligands they cOD.tained r Wllich were c\f interest in connection with solvation. A variety of adjustments were made to Allinger's M:M2 force·-field ill order to inl.prove its performance in the treatment of these systems. A set of u,nique force constants was introduced for' those terms representing the metal ligand bond lengths, bond angles, and, torsion angles. These were significantly smaller than trad.itionallY used. with organic compounds. The ~1orse poteIlt.ial energ'Y function was incorporated for the M-X l')ond lE~ngths and the cosine harmonic potential erlerg-y function was invoked for the MOP bond angle. These functions were found to accomodate the wide distribution of observed values better than the traditional harmonic approximations~ Crystal packing influences on the MOP angle were explored thr"ollgh ttle inclusion of the isolated molecule withil1 a shell cc)ntaini11g tl1e nearest neigl1'bors duri.rlg energy rninimization experiments~ This was found to further improve the fit of the MOP angle.
Resumo:
Hashinger Hall, Chapman University, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.
Resumo:
Groundbreaking for Hashinger Hall, Chapman University, Orange, California. Art Flint, geologist and science department chairman is at the far right, with President John Davis next to him. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.
Resumo:
Hashinger Hall, Chapman University, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.
Resumo:
Hashinger Hall, Chapman University, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.
Resumo:
Hashinger Hall, Chapman University, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.
Resumo:
James J. Campbell [right], director of the Chapman College Residence Education Center at the El Toro Marine Corps Air Station, discusses the college's new science scholarship program with Dr. Arthur Flint, chairman of the Chapman Division of Natural Sciences, in front of the new science center, Hashinger Hall, Chapman College, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.
Resumo:
Hashinger Hall, Chapman University, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.
Resumo:
Hashinger Hall, Chapman University, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.
Resumo:
Night view of Hashinger Hall, Chapman University, 346 N. Center Street, Orange, California. The late Dr. Edward H. Hashinger, former trustee and past chairman of the board is the man whose name has graced the walls of this building since 1969. The Hashinger Science Center (3 floors, 65,364 sq.ft.) houses all science departments including biology, natural and applied sciences, environmental and chemical sciences, food science and nutrition, kinesiology and physical therapy.