958 resultados para PORCINE EMBRYOS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A commercial polymeric film (Parafilm M (R), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M (R) (PF) and also into excised neonatal porcine skin. Parafilm M (R) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M (R), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence that some of the fungal metabolites present in food and feed may act as potential endocrine disruptors is increasing. Enniatin B (ENN B) is among the emerging Fusarium mycotoxins known to contaminate cereals. In this study, the H295R and neonatal porcine Leydig cell (LC) models, and reporter gene assays (RGAs) have been used to investigate the endocrine disrupting activity of ENN B. Aspects of cell viability, cell cycle distribution, hormone production as well as the expression of key steroidogenic genes were assessed using the H295R cell model. Cell viability and hormone production levels were determined in the LC model, while cell viability and steroid hormone nuclear receptor transcriptional activity were measured using the RGAs. ENN B (0.01–100 μM) was cytotoxic in the H295R and LC models used; following 48 h incubation with 100 μM. Flow cytometry analysis showed that ENN B exposure (0.1–25 μM) led to an increased proportion of cells in the S phase at higher ENN B doses (>10 μM) while cells at G0/G1 phase were reduced. At the receptor level, ENN B (0.00156–15.6 μM) did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs), however cell viability was affected at 15.6 μM. Measurement of hormone levels in H295R cells revealed that the production of progesterone, testosterone and cortisol in exposed cells were reduced, but the level of estradiol was not significantly affected. There was a general reduction of estradiol and testosterone levels in exposed LC. Only the highest dose (100 μM) used had a significant effect, suggesting the observed inhibitory effect is more likely associated with the cytotoxic effect observed at this dose. Gene transcription analysis in H295R cells showed that twelve of the sixteen genes were significantly modulated (p < 0.05) by ENN B (10 μM) compared to the control. Genes HMGR, StAR, CYP11A, 3βHSD2 and CYP17 were downregulated, whereas the expression of CYP1A1, NR0B1, MC2R, CYP21, CYP11B1, CYP11B2 and CYP19 were upregulated. The reduction of hormones and modulation of genes at the lower dose (10 μM) in the H295R cells suggests that adrenal endocrine toxicity is an important potential hazard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The antitumor effects of FK506-binding protein like (FKBPL) and its extracellular role in angiogenesis are well characterized; however, its role in physiological/developmental angiogenesis and the effect of FKBPL ablation has not been evaluated. This is important as effects of some angiogenic proteins are dosage dependent. Here we evaluate the regulation of FKBPL secretion under angiogenic stimuli, as well as the effect of FKBPL ablation in angiogenesis using mouse and zebrafish models.

APPROACH AND RESULTS: FKBPL is secreted maximally by human microvascular endothelial cells and fibroblasts, and this was specifically downregulated by proangiogenic hypoxic signals, but not by the angiogenic cytokines, VEGF or IL8. FKBPL's critical role in angiogenesis was supported by our inability to generate an Fkbpl knockout mouse, with embryonic lethality occurring before E8.5. However, whilst Fkbpl heterozygotic embryos showed some vasculature irregularities, the mice developed normally. In murine angiogenesis models, including the ex vivo aortic ring assay, in vivo sponge assay, and tumor growth assay, Fkbpl(+/-) mice exhibited increased sprouting, enhanced vessel recruitment, and faster tumor growth, respectively, supporting the antiangiogenic function of FKBPL. In zebrafish, knockdown of zFkbpl using morpholinos disrupted the vasculature, and the phenotype was rescued with hFKBPL. Interestingly, this vessel disruption was ineffective when zcd44 was knocked-down, supporting the dependency of zFkbpl on zCd44 in zebrafish.

CONCLUSIONS: FKBPL is an important regulator of angiogenesis, having an essential role in murine and zebrafish blood vessel development. Mouse models of angiogenesis demonstrated a proangiogenic phenotype in Fkbpl heterozygotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microneedles (MNs) are a minimally invasive drug delivery platform, designed to enhance transdermal drug delivery by breaching the stratum corneum. For the first time, this study describes the simultaneous delivery of a combination of three drugs using a dissolving polymeric MN system. In the present study, aspirin, lisinopril dihydrate, and atorvastatin calcium trihydrate were used as exemplar cardiovascular drugs and formulated into MN arrays using two biocompatible polymers, poly(vinylpyrrollidone) and poly(methylvinylether/maleic acid). Following fabrication, dissolution, mechanical testing, and determination of drug recovery from the MN arrays, in vitro drug delivery studies were undertaken, followed by HPLC analysis. All three drugs were successfully delivered in vitro across neonatal porcine skin, with similar permeation profiles achieved from both polymer formulations. An average of 126.3 ± 18.1 μg of atorvastatin calcium trihydrate was delivered, notably lower than the 687.9 ± 101.3 μg of lisinopril and 3924 ± 1011 μg of aspirin, because of the hydrophobic nature of the atorvastatin molecule and hence poor dissolution from the array. Polymer deposition into the skin may be an issue with repeat application of such a MN array, hence future work will consider more appropriate MN systems for continuous use, alongside tailoring delivery to less hydrophilic compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe, for the first time, considerations in the sterile manufacture of polymeric microneedle arrays. Microneedles (MN) made from dissolving polymeric matrices and loaded with the model drugs ovalbumin (OVA) and ibuprofen sodium and hydrogel-forming MN composed of "super-swelling" polymers and their corresponding lyophilised wafer drug reservoirs loaded with OVA and ibuprofen sodium were prepared aseptically or sterilised using commonly employed sterilisation techniques. Moist and dry heat sterilisation, understandably, damaged all devices, leaving aseptic production and gamma sterilisation as the only viable options. No measureable bioburden was detected in any of the prepared devices, and endotoxin levels were always below the US Food & Drug Administration limits (20 endotoxin units/device). Hydrogel-forming MN were unaffected by gamma irradiation (25 kGy) in terms of their physical properties or capabilities in delivering OVA and ibuprofen sodium across excised neonatal porcine skin in vitro. However, OVA content in dissolving MN (down from approximately 101.1 % recovery to approximately 58.3 % recovery) and lyophilised wafer-type drug reservoirs (down from approximately 99.7 % recovery to approximately 60.1 % recovery) was significantly reduced by gamma irradiation, while the skin permeation profile of ibuprofen sodium from gamma-irradiated dissolving MN was markedly different from their non-irradiated counterparts. It is clear that MN poses a very low risk to human health when used appropriately, as evidenced here by low endotoxin levels and absence of microbial contamination. However, if guarantees of absolute sterility of MN products are ultimately required by regulatory authorities, it will be necessary to investigate the effect of lower gamma doses on dissolving MN loaded with active pharmaceutical ingredients and lyophilised wafers loaded with biomolecules in order to avoid the expense and inconvenience of aseptic processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mullerian inhibiting substance (MIS), a member of the transforming growth factor-β superfamily, induces regression of the Mullerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G1 phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFκB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IκBα expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFκB signaling pathway was required for these processes. These results identify the NFκB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe, for the first time the use of hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of drug substances and glucose from skin in vitro and in vivo. MN prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) (11.1% w/w) and poly(ethyleneglycol) 10,000 daltons (5.6% w/w) and crosslinked by esterification swelled upon skin insertion by uptake of fluid. Post-removal, theophylline and caffeine were extracted from MN and determined using HPLC, with glucose quantified using a proprietary kit. In vitro studies using excised neonatal porcine skin bathed on the underside by physiologically-relevant analyte concentrations showed rapid (5 min) analyte uptake. For example, mean concentrations of 0.16 μg/mL and 0.85 μg/mL, respectively, were detected for the lowest (5 μg/mL) and highest (35 μg/mL) Franz cell concentrations of theophylline after 5 min insertion. A mean concentration of 0.10 μg/mL was obtained by extraction of MN inserted for 5 min into skin bathed with 5 μg/mL caffeine, while the mean concentration obtained by extraction of MN inserted into skin bathed with 15 μg/mL caffeine was 0.33 μg/mL. The mean detected glucose concentration after 5 min insertion into skin bathed with 4 mmol/L was 19.46 nmol/L. The highest theophylline concentration detected following extraction from a hydrogel-forming MN inserted for 1 h into the skin of a rat dosed orally with 10 mg/kg was of 0.363 μg/mL, whilst a maximum concentration of 0.063 μg/mL was detected following extraction from a MN inserted for 1 h into the skin of a rat dosed with 5 mg/kg theophylline. In human volunteers, the highest mean concentration of caffeine detected using MN was 91.31 μg/mL over the period from 1 to 2 h post-consumption of 100 mg Proplus® tablets. The highest mean blood glucose level was 7.89 nmol/L detected 1 h following ingestion of 75 g of glucose, while the highest mean glucose concentration extracted from MN was 4.29 nmol/L, detected after 3 hours skin insertion in human volunteers. Whilst not directly correlated, concentrations extracted from MN were clearly indicative of trends in blood in both rats and human volunteers. This work strongly illustrates the potential of hydrogel-forming MN in minimally-invasive patient monitoring and diagnosis. Further studies are now ongoing to reduce clinical insertion times and develop mathematical algorithms enabling determination of blood levels directly from MN measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe, for the first time, hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of lithium in vitro and in vivo. MN arrays, prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) and crosslinked by poly(ethyleneglycol), imbibed interstitial fluid (ISF) upon skin insertion. Such MN were always removed intact. In vitro, mean detected lithium concentrations showed no significant difference following 30 min MN application to excised neonatal porcine skin for lithium citrate concentrations of 0.9 and 2 mmol/l. However, after 1 h application, the mean lithium concentrations extracted were significantly different, being appropriately concentration-dependent. In vivo, rats were orally dosed with lithium citrate equivalent to 15 mg/kg and 30 mg/kg lithium carbonate, respectively. MN arrays were applied 1 h after dosing and removed 1 h later. The two groups, having received different doses, showed no significant difference between lithium concentrations in serum or MN. However, the higher dosed rats demonstrated a lithium concentration extracted from MN arrays equivalent to a mean increase of 22.5 % compared to rats which received the lower dose. Hydrogel-forming MN clearly have potential as a minimally-invasive tool for lithium monitoring in out-patient settings. We will now focus on correlation of serum and MN lithium concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transdermal drug delivery is an attractive route of drug administration, however there are relatively few marketed transdermal products. To increase delivery across the skin, strategies to enhance skin permeability are widely investigated, with microneedles demonstrating particular promise. Hydrogel-forming microneedles are inserted into the skin, and following dissolution of a drug loaded reservoir and movement of the drug through the created channels, the microneedle array is removed intact, and can then be readily and safely discarded. This study presents the formulation and evaluation of an integrated microneedle patch containing the Alzheimer's drug, donepezil hydrochloride. The integrated patch consisted of hydrogel-forming microneedles in combination with a donepezil hydrochloride containing film. Formulation and characterisation of plasticised films, prepared from poly(vinylpyrrolidone) or poly (methyl vinyl ether co-maleic anhydride/acid) (Gantrez(®)) polymers, is presented. Furthermore, in vitro permeation of donepezil hydrochloride across neonatal porcine skin from the patches was investigated, with 854.71 μg ± 122.71 μg donepezil hydrochloride delivered after 24 h, using the optimum patch formulation. Following administration of the patch to an animal model, plasma concentrations of 51.8 ± 17.6 ng/mL were obtained, demonstrating the success of this delivery platform for donepezil hydrochloride.