998 resultados para PLATINUM SILICIDE FORMATION
Resumo:
The dynamics of free electron-hole pairs and excitons in GaAs-AlGaAs-GaAs core-shell-skin nanowires is investigated using femtosecond transient photoluminescence spectroscopy at 10 K. Following nonresonant excitation, a bimolecular interconversion of the initially generated electron-hole plasma into an exciton population is observed. This conducting-to-insulating transition appears to occur gradually over electron-hole charge pair densities of 2-4 × 10(16) cm(-3) . The smoothness of the Mott transition is attributed to the slow carrier-cooling during the bimolecular interconversion of free charge carriers into excitons and to the presence of chemical-potential fluctuations leading to inhomogeneous spectral characteristics. These results demonstrate that high-quality nanowires are model systems for investigating fundamental scientific effects in 1D heterostructures.
Resumo:
The structural and morphological characteristics of InAs/GaAs radial nanowire heterostructures were investigated using transmission electron microscopy. It has been found that the radial growth of InAs was preferentially initiated on the { 112 } A sidewalls of GaAs nanowires. This preferential deposition leads to extraordinarily asymmetric InAs/GaAs radial nanowire heterostructures. Such formation of radial nanowire heterostructures provides an opportunity to engineer hierarchical nanostructures, which further widens the potential applications of semiconductor nanostructures. © 2008 American Institute of Physics.
Resumo:
To observe the axial growth behavior of InAs on GaAs nanowires, InAs was grown for different growth durations on GaAs nanowires using Au nanoparticles. Through transmission electron microscopy, we have observed the following evolution steps for the InAs growth. (1) In the initial stages of the InAs growth, InAs clusters into a wedge shape preferentially at an edge of the Au/GaAs interface by minimizing Au/InAs interfacial area; (2) with further growth of InAs, the Au particle moves sidewards and then downwards by preserving an interface with GaAs nanowire sidewalls. The lower interfacial energy of Au/GaAs than that of Au/In As is attributed to be the reason for such Au movement. This downward movement of the Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and with further supply of In and As vapor reactants, the Au nanoparticle assists the formation of InAs branches. These observations give some insights into vapor-liquid-solid growth and the formation of kinks in nanowire heterostructures. © 2008 Materials Research Society.
Resumo:
The kinks formation in heterostructural nanowires was observed to be dominant when InAs nanowires were grown on GaAs nanowires. Nanowires were grown through vapor-liquid-solid (VLS) mechanism in an MOCVD (metalorganic chemical vapor deposition) reactor. GaAs nanowires were grown in [1 1 1 ]B direction on a GaAs (1 1 1 )B substrate. When InAs nanowires grown on the GaAs nanowires, most of the InAs nanowires changed their growth directions from [1 1 1 ]B to other 〈111〉B directions. The kinks formation is ascribed to the large compressive misfit strain at the GaAs/InAs interface (7.2% lattice mismatch between GaAs and InAs) and the high mobility of indium species during MOCVD growth. The in-depth analysis of the kinks formation was done by growing InAs for short times on the GaAs nanowires and characterizing the samples. The hindrance to compressively strain InAs to form coherent layers with GaAs pushed the InAs/Au interfaces to the sides of the GaAs nanowires growth ends. New InAs/Au interfaces have generated at the sides of GaAs nanowires, due to lateral growth of InAs on GaAs nanowires. These new interfaces led the InAs nanowires growth in other 〈111〉B directions. The morphological and structural features of these heterostructural kinked nanowires were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. © 2006 IEEE.
Resumo:
This paper presents new experimental measurements of spike-type stall inception. The measurements were carried out in the single stage Deverson compressor at the Whittle Laboratory. The primary objective was to characterize the flow field in the tip clearance gap during stall inception using sufficient instrumentation to give high spatial and temporal resolution. Measurements were recorded using arrays of unsteady pressure transducers over the rotor tips and hot-wires in the tip gap. Pre-stall ensemble averaged velocity and pressure maps were obtained as well as pressure contours of the stall event. In order to study the transient inception process in greater detail, vector maps were built up from hundreds of stalling events using a triggering system based on the stalling event itself. The results show an embryonic disturbance starting within the blade passage and leading to the formation of a clear spike. The origins of the spike and its relation to the tip leakage vortex are discussed. It has also been shown that before stall the flow in the blade passage which is most likely to stall is generally more unsteady, from revolution to revolution, than the other passages in the annulus. Copyright © 2012 by ASME.
Resumo:
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Resumo:
The temperature dependence of the stress-induced martensite (SIM) formation in a Ti-10V-2Fe-3Al (Ti-1023) alloy under compressive loading has been studied. At low temperatures, the stress level at which martensite starts to form increases linearly with the deformation temperature, while the stress at which the deformation switches to regular plastic deformation is roughly temperature independent. A thermostatistical model for dislocation evolution is employed to describe deformation twinning in martensite. Combined effects of twinning induced plasticity and solid solution strengthening are considered in terms of temperature variations. The SIM effect disappears on deformation at temperatures beyond ~ 233 ° C, which is close to the predicted Ms temperature of 240°C. The thermostatistical model predicts a transition from twinned martensite to pure slip at 250°C. By providing a model to predict the martensite formation, and by describing deformation twinning, the present work provides a number of tools that may be employed to conceive new titanium alloys combining improved strength and ductility. © 2013 Elsevier B.V.
Resumo:
This paper presents new experimental measurements of spike-type stall inception. The measurements were carried out in the single stage Deverson compressor at the Whittle Laboratory. The primary objective was to characterize the flow field in the tip clearance gap during stall inception using sufficient instrumentation to give high spatial and temporal resolution. Measurements were recorded using arrays of unsteady pressure transducers over the rotor tips and hot-wires in the tip gap. Prestall ensemble averaged velocity and pressure maps were obtained as well as pressure contours of the stall event. In order to study the transient inception process in greater detail, vector maps were built up from hundreds of stalling events using a triggering system based on the stalling event itself. The results show an embryonic disturbance starting within the blade passage and leading to the formation of a clear spike. The origins of the spike and its relation to the tip leakage vortex are discussed. It has also been shown that before stall, the flow in the blade passage which is most likely to stall is generally more unsteady, from revolution to revolution, than the other passages in the annulus. © 2014 by ASME.
Resumo:
Highly sensitive biosensor for detection of acetylcholine (ACh) and competitive acetylcholinesterase (AChE) inhibitor, eserine, is investigated. Peculiar microelectronic configuration of an ion-sensitive field-effect transistor (ISFET) in addition to a right choice of the pH-transducing nanolayers allows recording a response of the enzyme-modified ISFET (EnFET) to a wide range of ACh concentrations. We demonstrate a remarkable improvement of at least three orders of magnitude in dose response to ACh. Described bioelectronic system reveals clear response, when the catalytic activity of the immobilized AChE is inhibited in a reversible manner by eserine, competitive inhibitor of AChE. ©2007 IEEE.
Resumo:
Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.
Resumo:
Practical testing of the feasibility of cyanobacterial inoculation to speed up the recovery of biological soil crusts in the field was conducted in this experiment. Results showed that cyanobacterial and algal cover climbed up to 48.5% and a total of 14 cyanobacterial and algal species were identified at the termination of inoculation experiment; biological crusts' thickness, compressive and chlorophyll a content increased with inoculation time among 3 years; moss species appeared in the second year; cyanobacterial inoculation increased organic carbon and total nitrogen of the soil; total salt, calcium carbonate and electrical conductivity in the soil also increased after inoculation. Diverse vascular plant communities composed of 10 and 9 species are established by cyanobacterial inoculation on the windward and leeward surface of the dunes, respectively, after 3 years. The Simpson index for the above two communities are 0.842 and 0.852, while the Shannon-Weiner index are 2.097 and 2.053, respectively. In conclusion, we suggest that cyanobacterial inoculation would be a suitable and effective technique to recover biological soil crusts, and may further restore the ecological system. (C) 2008 Published by Elsevier Ltd.
Resumo:
The compositions and contents of astaxanthin esters and fatty acids in four types of Haematococcus pluvialis cells were studied by HPLC and GC-MS. Results showed that the synthesis and accumulation of astaxanthin was independent of the formation of cysts, but was highly correlated with the synthesis and accumulation of fatty acids, though it is an well known phenomenon that the accumulation of astaxanthin is usually accompanied by the formation of cyst. The red cysts contain more than 30% of fatty acids, with 81% of the unsaturated fatty acids. Taken together, besides a resource of astaxanthin, H. pluvialis would be a good resource of valuable fatty acids.