948 resultados para P element regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Respiratory rates of workers of the leaf cutting ant Atta sexdens rubropilosa were measured at different oxygen pressures, at 25°C. 2. In experiments where different ants were used at each of the oxygen pressures, respiration was regulated down to 70.8 mmHg. 3. When the same ants were submitted in sequence to declining pO2, the 'oxygen dependence indexes' (Tang P.S. (1933) Quart. Rev. Biol. 8, 260-274) also suggested a good regulatory capacity. 4. The results are discussed in terms of the variation of the partial pressures of O2 and CO2 that the ants probably encounter when wandering to and from the nest to forage, and when performing their heavy tasks (leaf transport, offspring and fungus care). 5. CO2 rise and O2 fall, from ants' respiration inside the ant hill, may act as the factors that, in a reflex way, keep the spiracles open and increase ventilation and the frequency of CO2 emission to keep the oxygen supply adequate to face the energetic demand of the routine level of activity of the workers, when passing from normoxia (air) to hypoxia (in nest galleries).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously proposed a role of hydration in the allosteric control of hemoglobin based on the effect of varying concentrations of polyols and polyethers on the human hemoglobin oxygen affinity and on the solution water activity (Colombo, M. F., Rau, D. C., and Parsegian, V. A. (1992) Science 256, 655-659). Here, the original analyses are extended to test the possibility of concomitant solute and water allosteric binding and by introducing the bulk dielectric constant as a variable in our experiments. We present data which indicate that glycine and glucose influence HbA oxygen affinity to the same extent, despite the fact that glycine increases and glucose decreases the bulk dielectric constant of the solution. Furthermore, we derive an equation linking changes in oxygen affinity to changes in differential solute and water binding to test critically the possibility of neutral solute heterotropic binding. Applied to the data, these analyses support our original interpretation that neutral solutes act indirectly on the regulation of allosteric behavior of hemoglobin by varying the chemical potential of water in solution. This leads to a displacement of the equilibrium between Hb conformational states in proportion to their differential hydration.