969 resultados para Oxyfluoride glasses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic ordering in network glasses on length scales longer than nearest-neighbour length scales has long been a source of controversy(1-6). Detailed experimental information is therefore necessary to understand both the network properties and the fundamentals of glass formation. Here we address the problem by investigating topological and chemical ordering in structurally disordered AX2 systems by applying the method of isotopic substitution in neutron diffraction to glassy ZnCl2. This system may be regarded as a prototypical ionic network forming glass, provided that ion polarization effects are taken into account(7), and has thus been the focus of much attention(8-14). By experiment, we show that both the topological and chemical ordering are described by two length scales at distances greater than nearest-neighbour length scales. One of these is associated with the intermediate range, as manifested by the appearance in the measured diffraction patterns of a first sharp diffraction peak at 1.09( 3) angstrom(-1); the other is associated with an extended range, which shows ordering in the glass out to 62( 4) angstrom. We also find that these general features are characteristic of glassy GeSe2, a prototypical covalently bonded network material(15,16). The results therefore offer structural insight into those length scales that determine many important aspects of supercooled liquid and glass phenomenology(11).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithofacial types of sediments formed in certain geographic and physical-chemical conditions of the Pacific Ocean are distinguished and characterized. It is shown that the regular change of bottom sediment types forming a genetic series from the coast to the pelagic zone clearly demonstrates a leading role of biogenic-terrigenous sedimentation in their formation. In the pelagic zone of the ocean erosion of islands and seamounts, basalt volcanism of anticlinal uplifts, as well as exhalative contribution play some role in addition to the main source of terrigenous and pyroclastic material from continents. These sources do not change, but only complicate terrigenous sedimentation in the studied area of the ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To study, for the first time, the effect of wearing ready-made glasses and glasses with power determined by self-refraction on children's quality of life. METHODS: This is a randomized, double-masked non-inferiority trial. Children in grades 7 and 8 (age 12-15 years) in nine Chinese secondary schools, with presenting visual acuity (VA) ≤6/12 improved with refraction to ≥6/7.5 bilaterally, refractive error ≤-1.0 D and <2.0 D of anisometropia and astigmatism bilaterally, were randomized to receive ready-made spectacles (RM) or identical-appearing spectacles with power determined by: subjective cycloplegic retinoscopy by a university optometrist (U), a rural refractionist (R) or non-cycloplegic self-refraction (SR). Main study outcome was global score on the National Eye Institute Refractive Error Quality of Life-42 (NEI-RQL-42) after 2 months of wearing study glasses, comparing other groups with the U group, adjusting for baseline score. RESULTS: Only one child (0.18%) was excluded for anisometropia or astigmatism. A total of 426 eligible subjects (mean age 14.2 years, 84.5% without glasses at baseline) were allocated to U [103 (24.2%)], RM [113 (26.5%)], R [108 (25.4%)] and SR [102 (23.9%)] groups, respectively. Baseline and endline score data were available for 398 (93.4%) of subjects. In multiple regression models adjusting for baseline score, older age (p = 0.003) and baseline spectacle wear (p = 0.016), but not study group assignment, were significantly associated with lower final score. CONCLUSION: Quality of life wearing ready-mades or glasses based on self-refraction did not differ from that with cycloplegic refraction by an experienced optometrist in this non-inferiority trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among various optical sensing schemes, infrared spectroscopy is a powerful tool for detecting and determining the composition of complex organic samples since vibrational finger prints of all biomolecules and organic species are located in this window. This spectroscopic technique is simple, reliable, fast, non-destructive, cost-effective while having low sensitivity. Use of metallic nanoparticles in association with a good IR transparent sensing substrate, is one of the promising solutions to enhance the sensitivity. Chalcogenide glasses are promising substrate material because of their extended optical transmission window starting from the visible to the far infrared range up to 20 μm, high refractive index usually between 2 and 3 and high optical nonlinearity, which make them good candidates as IR sensors and optical ultrafast nonlinear devices. These glasses are favorable sensor materials for the infrared spectral range because of their high IR transparency to allow for low optical loss at wavelengths corresponding to the characteristic optical absorption bands of organic molecules, high refractive index for tight confinement of optical energy within the resonator structure, processibility into thin film form, chemical compatibility for adhesion of silver nano particles and thin films and resistance to the chemical environment to be sensed. Molecules adsorbed to silver island structures shows enhanced IR absorption spectra and the extent of enhancement is determined by many factors such as the size, density and morphology of silver structures, optical and dielectric properties of the substrate material etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families.In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters.