970 resultados para Orbital robotics
Resumo:
Purpose: To determine the extent to which the accuracy of magnetic resonance imaging (MRI) based virtual 3-dimensional (3D) models of the intact orbit can approach that of the gold standard, computed tomography (CT) based models. The goal was to determine whether MRI is a viable alternative to CT scans in patients with isolated orbital fractures and penetrating eye injuries, pediatric patients, and patients requiring multiple scans in whom radiation exposure is ideally limited. Materials and Methods: Patients who presented with unilateral orbital fractures to the Royal Brisbane and Women’s Hospital from March 2011 to March 2012 were recruited to participate in this cross-sectional study. The primary predictor variable was the imaging technique (MRI vs CT). The outcome measurements were orbital volume (primary outcome) and geometric intraorbital surface deviations (secondary outcome)between the MRI- and CT-based 3D models. Results: Eleven subjects (9 male) were enrolled. The patients’ mean age was 30 years. On average, the MRI models underestimated the orbital volume of the CT models by 0.50 0.19 cm3 . The average intraorbital surface deviation between the MRI and CT models was 0.34 0.32 mm, with 78 2.7% of the surface within a tolerance of 0.5 mm. Conclusions: The volumetric differences of the MRI models are comparable to reported results from CT models. The intraorbital MRI surface deviations are smaller than the accepted tolerance for orbital surgical reconstructions. Therefore, the authors believe that MRI is an accurate radiation-free alternative to CT for the primary imaging and 3D reconstruction of the bony orbit. �
Resumo:
In this paper, the recent results of the space project IMPERA are presented. The goal of IMPERA is the development of a multirobot planning and plan execution architecture with a focus on a lunar sample collection scenario in an unknown environment. We describe the implementation and verification of different modules that are integrated into a distributed system architecture. The modules include a mission planning approach for a multirobot system and modules for task and skill execution within a lunar use-case scenario. The skills needed for the test scenario include cooperative exploration and mapping strategies for an unknown environment, the localization and classification of sample containers using a novel approach of semantic perception, and the skill of transporting sample containers to a collection point using a mobile manipulation robot. Additionally, we present our approach of a reliable communication framework that can deal with communication loss during the mission. Several modules are tested within several experiments in the domain of planning and plan execution, communication, coordinated exploration, perception, and object transportation. An overall system integration is tested on a mission scenario experiment using three robots.
Resumo:
There is an increased interest on the use of UAVs for environmental research and to track bush fire plumes, volcanic plumes or pollutant sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A memory based and gradient based approach, were developed and compared. A method for generating sparse plumes was also developed. Results indicate the ability of the algorithms to track plumes in 2D and 3D.
Resumo:
Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows implementation onboard an Autonomous Underwater Vehicle for improving navigation and obstacle avoidance performance.
Resumo:
This paper presents an extension to the Rapidly-exploring Random Tree (RRT) algorithm applied to autonomous, drifting underwater vehicles. The proposed algorithm is able to plan paths that guarantee convergence in the presence of time-varying ocean dynamics. The method utilizes 4-Dimensional, ocean model prediction data as an evolving basis for expanding the tree from the start location to the goal. The performance of the proposed method is validated through Monte-Carlo simulations. Results illustrate the importance of the temporal variance in path execution, and demonstrate the convergence guarantee of the proposed methods.
Resumo:
There is a need for systems which can autonomously perform coverage tasks on large outdoor areas. Unfortunately, the state-of-the-art is to use GPS based localization, which is not suitable for precise operations near trees and other obstructions. In this paper we present a robotic platform for autonomous coverage tasks. The system architecture integrates laser based localization and mapping using the Atlas Framework with Rapidly-Exploring Random Trees path planning and Virtual Force Field obstacle avoidance. We demonstrate the performance of the system in simulation as well as with real world experiments.
Resumo:
This paper describes the development and experimental evaluation of a novel vision-based Autonomous Surface Vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an Autonomous Underwater Vehicle, on the water’s surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force obstacle avoidance and docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. The system performance is demonstrated through real-world experiments.
Resumo:
In this paper we present research adapting a state of the art condition-invariant robotic place recognition algorithm to the role of automated inter- and intra-image alignment of sensor observations of environmental and skin change over time. The approach involves inverting the typical criteria placed upon navigation algorithms in robotics; we exploit rather than attempt to fix the limited camera viewpoint invariance of such algorithms, showing that approximate viewpoint repetition is realistic in a wide range of environments and medical applications. We demonstrate the algorithms automatically aligning challenging visual data from a range of real-world applications: ecological monitoring of environmental change, aerial observation of natural disasters including flooding, tsunamis and bushfires and tracking wound recovery and sun damage over time and present a prototype active guidance system for enforcing viewpoint repetition. We hope to provide an interesting case study for how traditional research criteria in robotics can be inverted to provide useful outcomes in applied situations.
Resumo:
UAVs could one day save the lives of lost civilians and those sent to find them, and a competition in outback Australia is proving how soon that day might come. We have all seen news stories of people who ventured beyond the day-to-day reach of the community and got lost: search parties are formed, aircraft drafted in, and often large sums of money expended in the quest to find them.