985 resultados para Optical Phenomena


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical parametric chirped pulse amplification with different pump wavelengths was investigated using LBO crystal, at signal central wavelength of 800 nm. According to our theoretical simulation, when pump wavelength is 492.5 nm, there is a maximal gain bandwidth of 190 nm. centered at 805 nm in optimal noncollinear angle using LBO. Presently, pump wavelength of 492.5 nm can be obtained from second harmonic generation of a Yb:Sr-5(PO4)(3)F laser. The broad gain bandwidth can completely support similar to 6 fs with a spectral centre of seed pulse at 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning crystal angle for phase matching. The gain spectrum with pump wavelength of 492.5 nm is much better than those with pump wavelengths of 400, 526.5 and 532 nm, at signal centre of 800 nm. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs; with an excellent spatial beam profile by self-guided propagation in argon. The original 52 fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12 fs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the theoretical solution and experimental verification of phase conjugation via nondegenerate four-wave mixing in resonant media. The theoretical work models the resonant medium as a two-level atomic system with the lower state of the system being the ground state of the atom. Working initially with an ensemble of stationary atoms, the density matrix equations are solved by third-order perturbation theory in the presence of the four applied electro-magnetic fields which are assumed to be nearly resonant with the atomic transition. Two of the applied fields are assumed to be non-depleted counterpropagating pump waves while the third wave is an incident signal wave. The fourth wave is the phase conjugate wave which is generated by the interaction of the three previous waves with the nonlinear medium. The solution of the density matrix equations gives the local polarization of the atom. The polarization is used in Maxwell's equations as a source term to solve for the propagation and generation of the signal wave and phase conjugate wave through the nonlinear medium. Studying the dependence of the phase conjugate signal on the various parameters such as frequency, we show how an ultrahigh-Q isotropically sensitive optical filter can be constructed using the phase conjugation process.

In many cases the pump waves may saturate the resonant medium so we also present another solution to the density matrix equations which is correct to all orders in the amplitude of the pump waves since the third-order solution is correct only to first-order in each of the field amplitudes. In the saturated regime, we predict several new phenomena associated with degenerate four-wave mixing and also describe the ac Stark effect and how it modifies the frequency response of the filtering process. We also show how a narrow bandwidth optical filter with an efficiency greater than unity can be constructed.

In many atomic systems the atoms are moving at significant velocities such that the Doppler linewidth of the system is larger than the homogeneous linewidth. The latter linewidth dominates the response of the ensemble of stationary atoms. To better understand this case the density matrix equations are solved to third-order by perturbation theory for an atom of velocity v. The solution for the polarization is then integrated over the velocity distribution of the macroscopic system which is assumed to be a gaussian distribution of velocities since that is an excellent model of many real systems. Using the Doppler broadened system, we explain how a tunable optical filter can be constructed whose bandwidth is limited by the homogeneous linewidth of the atom while the tuning range of the filter extends over the entire Doppler profile.

Since it is a resonant system, sodium vapor is used as the nonlinear medium in our experiments. The relevant properties of sodium are discussed in great detail. In particular, the wavefunctions of the 3S and 3P states are analyzed and a discussion of how the 3S-3P transition models a two-level system is given.

Using sodium as the nonlinear medium we demonstrate an ultrahigh-Q optical filter using phase conjugation via nondegenerate four-wave mixing as the filtering process. The filter has a FWHM bandwidth of 41 MHz and a maximum efficiency of 4 x 10-3. However, our theoretical work and other experimental work with sodium suggest that an efficient filter with both gain and a narrower bandwidth should be quite feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gain amplifier for degenerated optical parametric chirped-pulse amplification (OPCPA) with lithium triborate and cesium lithium borate (CLBO) crystals was demonstrated in a near-collinear configuration, The signal gain of the final energy amplifier with CLBO was similar to 6. After compression, the 123 fs pulse duration was obtained. Compared with potassium dihydrogen phosphate, it is confirmed that CLBO is more effective as a nonlinear crystal in a final power amplifier for terawatt or petawatt OPCPA systems. To our knowledge, this is the first demonstration of OPCPA with CLBO. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of noncollinear optical parametric amplification (NOPA) based on quasi-phase matching of periodically poled crystals are investigated, under the condition that the group velocity matching (GVM) of the signal and idler pulses is satisfied. Our study focuses on the dependence of the gain spectrum upon the noncollinear angle, crystal temperature, and crystal angle with periodically poled KTiOPO4 (PPKTP), periodically poled LiNbO3 (PPLN), and periodically poled LiTaO3 (PPLT), and the NOPA gain properties of the three crystals are compared. Broad gain bandwidth exists above 85 nm at a signal wavelength of 800 nm with a 532 nm pump pulse, with proper noncollinear angle and grating period at a fixed temperature for GVM. Deviation from the group-velocity-matched noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. Moreover, there is a large capability of crystal angle tuning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gain properties of near-collinear degenerated phase-matched optical parametric amplification (OPA) using PPKTP crystal are investigated theoretically. The results indicate that the type-0 phase matching of PPKTP has larger accepted angle and better gain spectrum by tuning crystal temperature or rotating crystal angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of noncollinear optical parametric amplification based on quasi-phase matching of periodically poled KTP are investigated theoretically. Our numerical simulation focuses on the gain spectrum of dependence upon noncollinear angle, crystal temperature and crystal angle. At the optimal noncollinear angle and grating period with fixed temperature, there exists a broadest gain bandwidth about 130 nm at signal wavelength of 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An erratum is presented to correct the propagation loss of the freestanding optical fibers fabricated in glass chip. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband near-infrared (IR) luminescence in transparent alkali gallium silicate glass-ceramics containing N2+-doped beta-Ga2O3 nanocrystals was observed. This broadband emission could be attributed to the T-3(2g) (F-3) -> (3)A(2g) (F-3) transition of octahedral Ni2+ ions in glass-ceramics. The full width at half-maximum (FWHM) of the near-IR luminescence and fluorescent lifetime of the glass-ceramic doped with 0.10 mol% NiO were 260 nm and similar to 1220 mu s, respectively. It is expected that transparent Ni2+-doped beta-Ga2O3 glass-ceramics with this broad near-IR emission and long fluorescent lifetime have potential applications as super-broadband optical amplification media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two overrun effects in the Coulomb explosion dynamics of heteronuclear clusters have been investigated theoretically by the use of a simplified electrostatic model. When the charge-to-mass ratio of light ions is higher than that of heavy ions, the light ions can overtake the heavy ions inside the cluster and acquire a higher kinetic energy. Further, if the charge density of the heavy ions is twice as high as that of the light ions, i.e. a proposed competitive parameter xi = rho BqB/rho AqA > 2, the inner light ions can overtake those light ions on the surface of the cluster and form a shock shell during the explosion, which might drive the intracluster collision and fusion of the light ions. Different regimes of nuclear fusion are discussed and the corresponding neutron yields are estimated. Our analysis indicates that the probability of intracluster fusion is quite low even if deuterated heteronuclear clusters such as (DI)(n) with large size and high competitive parameter are employed. However, heteronuclear clusters are still a better candidate compared with homonuclear clusters for enhancing the total intercluster fusion yield because both a higher energy region and a higher proportion of deuterons distributing in the energy region can be created in the deuterated heteronuclear clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of noncollinear optical parametric amplification in periodically poled lithium niobate (PPLN) which is realized by quasi-phase matching (QPM) technology, we consider the possibility of semi-noncollinear phase matching between collinear and noncollinear geometries by tilting a PPLN-crystal's parallel grating at a sure angle. Numerical simulation with proper parameters shows that we can achieve a broader optical parametric amplification (OPA) bandwidth than that of noncollinear geometry. About 121 nm at a signal wavelength of 800 and 70 nm at a signal wavelength of 1064 nm under optimal conditions are obtained when the crystal length is 9 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence. After heat-treatment, ZnAl2O4 crystallite was precipitated in the glasses, and its average size increased with increasing heat-treatment temperature. No infrared emission was detected in the as-prepared glass samples, while broadband infrared luminescence centered at 1310 nm with full width at half maximum (FWHM) of about 300 nm was observed from the glass-ceramics. The peak position of the infrared luminescence showed a blue-shift with increasing heat-treatment temperature, but a red-shift with an increase in NiO concentration. The mechanisms of the observed phenomena were discussed. These glass-ceramics are promising as materials for super broadband optical amplifier and tunable laser. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical microscopy has become an indispensable tool for biological researches since its invention, mostly owing to its sub-cellular spatial resolutions, non-invasiveness, instrumental simplicity, and the intuitive observations it provides. Nonetheless, obtaining reliable, quantitative spatial information from conventional wide-field optical microscopy is not always intuitive as it appears to be. This is because in the acquired images of optical microscopy the information about out-of-focus regions is spatially blurred and mixed with in-focus information. In other words, conventional wide-field optical microscopy transforms the three-dimensional spatial information, or volumetric information about the objects into a two-dimensional form in each acquired image, and therefore distorts the spatial information about the object. Several fluorescence holography-based methods have demonstrated the ability to obtain three-dimensional information about the objects, but these methods generally rely on decomposing stereoscopic visualizations to extract volumetric information and are unable to resolve complex 3-dimensional structures such as a multi-layer sphere.

The concept of optical-sectioning techniques, on the other hand, is to detect only two-dimensional information about an object at each acquisition. Specifically, each image obtained by optical-sectioning techniques contains mainly the information about an optically thin layer inside the object, as if only a thin histological section is being observed at a time. Using such a methodology, obtaining undistorted volumetric information about the object simply requires taking images of the object at sequential depths.

Among existing methods of obtaining volumetric information, the practicability of optical sectioning has made it the most commonly used and most powerful one in biological science. However, when applied to imaging living biological systems, conventional single-point-scanning optical-sectioning techniques often result in certain degrees of photo-damages because of the high focal intensity at the scanning point. In order to overcome such an issue, several wide-field optical-sectioning techniques have been proposed and demonstrated, although not without introducing new limitations and compromises such as low signal-to-background ratios and reduced axial resolutions. As a result, single-point-scanning optical-sectioning techniques remain the most widely used instrumentations for volumetric imaging of living biological systems to date.

In order to develop wide-field optical-sectioning techniques that has equivalent optical performance as single-point-scanning ones, this thesis first introduces the mechanisms and limitations of existing wide-field optical-sectioning techniques, and then brings in our innovations that aim to overcome these limitations. We demonstrate, theoretically and experimentally, that our proposed wide-field optical-sectioning techniques can achieve diffraction-limited optical sectioning, low out-of-focus excitation and high-frame-rate imaging in living biological systems. In addition to such imaging capabilities, our proposed techniques can be instrumentally simple and economic, and are straightforward for implementation on conventional wide-field microscopes. These advantages together show the potential of our innovations to be widely used for high-speed, volumetric fluorescence imaging of living biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the fabrication of microfluidic channel structures on the surface of a borosilicate glass slide by femtosecond laser direct writing for optical waveguide application. Liquid with a variable refractive index is fed into the microchannel, serving as the core of the waveguide. We demonstrate that either a multimode or a single-mode waveguide can be achieved by controlling the refractive index of the liquid. (C) 2007 Optical Society of America