969 resultados para Optic neuritis
Resumo:
The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.
Resumo:
Among the optical structures investigated for optical sensing purpose, a significant amount of research has been conducted on photonic crystal based sensors. A particular advantage of photonic crystal based sensors is that they show superior sensitivity for ultra-small volume sensing. In this study we investigate polarization changes in response to the changes in the cover index of magneto-optic active photonic band gap structures. One-dimensional photonic-band gap structures fabricated on iron garnet materials yield large polarization rotations at the band gap edges. The enhanced polarization effects serve as an excellent tool for chemical sensing showing high degree of sensitivity for photonic crystal cover refractive index changes. The one dimensional waveguide photonic crystals are fabricated on single-layer bismuth-substituted rare earth iron garnet films ((Bi, Y, Lu)3(Fe, Ga)5O12 ) grown by liquid phase epitaxy on gadolinium gallium garnet substrates. Band gaps have been observed where Bragg scattering conditions links forward-going fundamental waveguide modes to backscattered high-order waveguide modes. Large near-band-edge polarization rotations which increase progressively with backscattered-mode order have been experimentally demonstrated for multiple samples with different composition, film thickness and fabrication parameters. Experimental findings are supported by theoretical analysis of Bloch modes polarization states showing that large near stop-band edge rotations are induced by the magneto-photonic crystal. Theoretical and experimental analysis conducted on polarization rotation sensitivity to waveguide photonic crystal cover refractive index changes shows a monotonic enhancement of the rotation with cover index. The sensor is further developed for selective chemical sensing by employing Polypyrrole as the photonic crystal cover layer. Polypyrrole is one of the extensively studied conducting polymers for selective analyte detection. Successful detection of aqueous ammonia and methanol has been achieved with Polypyrrole deposited magneto-photonic crystals.
Resumo:
PURPOSE: To assess the outcomes in patients who required 1 or more vitreoretinal interventions for posterior segment complications arising from elective uneventful cataract surgery. SETTING: Tertiary referral center, single-center study. METHODS: A retrospective interventional case series included 56 consecutive patients who were referred for surgical correction of posterior segment complications within 6 months of cataract surgery. The study period was between 1996 and 2003, and the minimum follow-up was 5 months. RESULTS: Posterior segment complications were resolved with a single surgical intervention in 40 cases (71.4%). Within 5 months of primary surgical correction, persisting or newly arising posterior segment complications were noted in 16 cases (28.6%). After a mean of 2.1 +/- 1.4 (SD) additional surgeries, the number of eyes with posterior segment problems decreased to 7 (12.5%) (P = .035). Posterior segment complications requiring more than 1 vitreoretinal intervention included retinal detachment, endophthalmitis, and choroidal hemorrhages. After primary correction surgery, the mean best corrected visual acuity increased from 0.15 +/- 0.24 to 0.37 +/- 0.33 (P = .001) after a single intervention and to 0.39 +/- 0.32 (P>.05) after additional interventions. Although the intraocular pressure (IOP) decreased from 21.8 +/- 16.6 mm Hg to 14.9 +/- 3.4 mm Hg (P = .008), 4 (7.1%) consecutive vascular optic atrophies occurred. A reduction in corneal transparency was observed in 46.4% of patients before primary surgical correction and 12.5% after primary surgical correction (P<.001). CONCLUSIONS: In many cases, posterior segment complications arising from cataract surgery could be repaired with favorable functional and anatomical outcomes by a single vitreoretinal intervention. Additional surgery, if requested, provided stabilization of the anatomical and functional outcomes.
Resumo:
PURPOSE: We report the clinical, morphological, and ultrastructural findings of 13 consecutively explanted opacified Hydroview(R) (hydrogel) intraocular lenses (IOLs). Our purpose was to provide a comprehensive account on the possible factors involved in late postoperative opacification of these IOLs. PATIENTS AND METHODS: Thirteen consecutive opacified hydrogel IOLs (Hydroview H 60 M, Bausch ; Lomb) were explanted due to the significant visual impairment they caused. The IOLs underwent macroscopical examination, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrophoresis for protein detection. Three unused control Hydroview IOLs served for comparison. RESULTS: Macroscopical examination showed a diffuse or localized grey-whitish opacification within the IOL optic. TEM confirmed the presence of lesions inside the optic in all the explanted IOLs and revealed 3 patterns of deep deposits: a) diffuse, thick, granular, electron-dense ones; b) small, thin, lattice-like ones, with prominent electron-lucent areas; and c) elongated electron-dense formations surrounded by electron-lucent halos. SEM showed surface deposits on four IOLs. EDS revealed oxygen and carbon in all IOLs and documented calcium, phosphorus, silicon and/or iron in the deposits. Two of the patients with iron in their IOLs had eye surgery prior to their phacoemulsification. Iron correlated well with the second TEM pattern of deep lesions, whereas calcium with the third TEM pattern. No protein bands were detected on electrophoresis. Control lenses did not show any ultrastructural or chemical abnormality. CONCLUSIONS: The present study supports the presence of chemical alterations inside the polymer of the optic in late postoperative opacification of Hydroview IOLs. This opacification does not follow a unique pathway but may present under different ultrastructular patterns depending on the responsible factors. Mechanical stress during surgery may initiate a sequence of events where ions such as calcium, phosphorus, silicon, and/or iron, participate in a biochemical cascade that leads to gradual alteration of the polymer network. Intraocular inflammation due to previous operation may be a factor inducing opacification through increase of iron-binding capacity in the aqueous humour. Calcification accounts only partially for the opacification noted in this type of IOL.
Resumo:
A 29-year-old woman with a long-lasting history of oligoamenorrhea, fell pregnant shortly after being diagnosed with acromegaly. LABORATORY TESTS AND IMAGING: A high IGF-1 concentration and an oral glucose tolerance test confirmed the diagnosis. Cranial magnetic resonance imaging demonstrated a macroadenoma of the pituitary with suprasellar extension and compression of the optic chiasm leading to incomplete hemianopsia.
Resumo:
This presentation provides an overview of the type of work that involves trying to resolve human/grizzly bear conflicts. Much of this work involves public education, cap-turing, handling, and monitoring grizzly bears, the use of Karelian Bear Dogs, and using new technology. Some of the new technology includes the use of remote cameras, an au-tomated bear trap, microchips, DNA, GPS radio collars, and an Electro-Optic/Infrared imagery system to locate grizzly bears.
Resumo:
Lesion detection aids ideally aim at increasing the sensitivity of visual caries detection without trading off too much in terms of specificity. The use of a dental probe (explorer), bitewing radiography and fibre-optic transillumination (FOTI) have long been recommended for this purpose. Today, probing of suspected lesions in the sense of checking the 'stickiness' is regarded as obsolete, since it achieves no gain of sensitivity and might cause irreversible tooth damage. Bitewing radiography helps to detect lesions that are otherwise hidden from visual examination, and it should therefore be applied to a new patient. The diagnostic performance of radiography at approximal and occlusal sites is different, as this relates to the 3-dimensional anatomy of the tooth at these sites. However, treatment decisions have to take more into account than just lesion extension. Bitewing radiography provides additional information for the decision-making process that mainly relies on the visual and clinical findings. FOTI is a quick and inexpensive method which can enhance visual examination of all tooth surfaces. Both radiography and FOTI can improve the sensitivity of caries detection, but require sufficient training and experience to interpret information correctly. Radiography also carries the burden of the risks and legislation associated with using ionizing radiation in a health setting and should be repeated at intervals guided by the individual patient's caries risk. Lesion detection aids can assist in the longitudinal monitoring of the behaviour of initial lesions.
Resumo:
Little is known about the ocular and cerebral blood flow during exposure to increasingly hypoxic conditions at high altitudes. There is evidence that an increase in cerebral blood flow resulting from altered autoregulation constitutes a risk factor for acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) by leading to capillary overperfusion and vasogenic cerebral edema. The retina represents the only part of the central nervous system where capillary blood flow is visible and can be measured by noninvasive means. In this study we aimed to gain insights into retinal and choroidal autoregulatory properties during hypoxia and to correlate circulatory changes to symptoms of AMS and clinical signs of HACE. This observational study was performed within the scope of a high-altitude medical research expedition to Mount Muztagh Ata (7,546 m). Twenty seven participants underwent general and ophthalmic examinations up to a maximal height of 6,800 m. Examinations included fundus photography and measurements of retinal and choroidal blood flow, as well as measurement of arterial oxygen saturation and hematocrit. The initial increase in retinal blood velocity was followed by a decrease despite further ascent, whereas choroidal flow increase occurred later, at even higher altitudes. The sum of all adaptational mechanisms resulted in a stable oxygen delivery to the retina and the choroid. Parameters reflecting the retinal circulation and optic disc swelling correlated well with the occurrence of AMS-related symptoms. We demonstrate that sojourns at high altitudes trigger distinct behavior of retinal and choroidal blood flow. Increase in retinal but not in choroidal blood flow correlated with the occurrence of AMS-related symptoms.
Resumo:
Adult neurogenesis has been linked to several cognitive functions and neurological disorders. Description of adult neurogenesis in a model organism like Drosophila could facilitate the genetic study of normal and abnormal neurogenesis in the adult brain. So far, formation of new neurons has not been detected in adult fly brains and hence has been thought to be absent in Drosophila. Here, we used an improved lineage-labeling method to show that, surprisingly, adult neurogenesis occurs in the medulla cortex of the Drosophila optic lobes. We also find that acute brain damage to this region stimulates adult neurogenesis. Finally, we identify a factor induced by acute damage, which is sufficient to specifically activate the proliferation of a cell type with adult neuroblast characteristics. Our results reveal unexpected plasticity in the adult Drosophila brain and describe a unique model for the genetic analysis of adult neurogenesis, plasticity, and brain regeneration.
Resumo:
BACKGROUND Stereotactic navigation technology can enhance guidance during surgery and enable the precise reproduction of planned surgical strategies. Currently, specific systems (such as the CAS-One system) are available for instrument guidance in open liver surgery. This study aims to evaluate the implementation of such a system for the targeting of hepatic tumors during robotic liver surgery. MATERIAL AND METHODS Optical tracking references were attached to one of the robotic instruments and to the robotic endoscopic camera. After instrument and video calibration and patient-to-image registration, a virtual model of the tracked instrument and the available three-dimensional images of the liver were displayed directly within the robotic console, superimposed onto the endoscopic video image. An additional superimposed targeting viewer allowed for the visualization of the target tumor, relative to the tip of the instrument, for an assessment of the distance between the tumor and the tool for the realization of safe resection margins. RESULTS Two cirrhotic patients underwent robotic navigated atypical hepatic resections for hepatocellular carcinoma. The augmented endoscopic view allowed for the definition of an accurate resection margin around the tumor. The overlay of reconstructed three-dimensional models was also used during parenchymal transection for the identification of vascular and biliary structures. Operative times were 240 min in the first case and 300 min in the second. There were no intraoperative complications. CONCLUSIONS The da Vinci Surgical System provided an excellent platform for image-guided liver surgery with a stable optic and instrumentation. Robotic image guidance might improve the surgeon's orientation during the operation and increase accuracy in tumor resection. Further developments of this technological combination are needed to deal with organ deformation during surgery.
Resumo:
We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.
Resumo:
Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.
Resumo:
Retinal degeneration causes vision impairment and blindness in humans. If one day we are to harness the potential of stem cell-based cell replacement therapies to treat these conditions, it is imperative that we better understand normal retina development. Currently, the genes and mechanisms that regulate the specification of the neuroretina during vertebrate eye development remain unknown. Here, we identify sine oculis-related homeobox 3 (Six3) as a crucial player in this process in mice. In Six3 conditional-mutant mouse embryos, specification of the neuroretina was abrogated, but that of the retinal pigmented epithelium was normal. Conditional deletion of Six3 did not affect the initial development of the optic vesicle but did arrest subsequent neuroretina specification. Ectopic rostral expansion of Wnt8b expression was the major response to Six3 deletion and the leading cause for the specific lack of neuroretina, as ectopic Wnt8b expression in transgenic embryos was sufficient to suppress neuroretina specification. Using chromatin immunoprecipitation assays, we identified Six3-responsive elements in the Wnt8b locus and demonstrated that Six3 directly repressed Wnt8b expression in vivo. Our findings provide a molecular framework to the program leading to neuroretina differentiation and may be relevant for the development of novel strategies aimed at characterizing and eventually treating different abnormalities in eye formation.
Resumo:
Glaucoma is a collection of diseases characterized by multifactorial progressive changes leading to visual field loss and optic neuropathy most frequently due to elevated intraocular pressure (IOP). The goal of treatment is the lowering of the IOP to prevent additional optic nerve damage. Treatment usually begins with topical pharmacological agents as monotherapy, progresses to combination therapy with agents from up to 4 different classes of IOP-lowering medications, and then proceeds to laser or incisional surgical modalities for refractory cases. The fixed combination therapy with the carbonic anhydrase inhibitor dorzolamide hydrochloride 2% and the beta blocker timolol maleate 0.5% is now available in a generic formulation for the treatment of patients who have not responded sufficiently to monotherapy with beta adrenergic blockers. In pre- and postmarketing clinical studies, the fixed combination dorzolamide-timolol has been shown to be safe and efficacious, and well tolerated by patients. The fixed combination dorzolamide-timolol is convenient for patients, reduces their dosing regimen with the goal of increasing their compliance, reduces the effects of "washout" when instilling multiple drops, and reduces the preservative burden by reducing the number of drops administered per day.
Resumo:
PURPOSE: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.