979 resultados para OXIDATIVE ADDITION
Resumo:
The objective of this study was to determine the concentration of total selenium (Se) and proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the tissues of female turkeys offered diets containing graded additions of selenized-enriched yeast (SY), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of breast and thigh muscle were assessed at 0 and 10 days post mortem. A total of 216 female turkey poults were enrolled in the study. A total of 24 birds were euthanized at the start of the study and samples of blood, breast, thigh, heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments(n548 birds/treatment) that differed either in Se source (SY v. SS) or dose (Con [0.2 mg/kg total Se], SY-L and SS-L [0.3mg/kg total Se as SY and SS, respectively] and SY-H [0.45mg total Se/kg]). Following 42 and 84 days of treatment 24 birds per treatment were euthanized and samples of blood, breast, thigh, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in breast and thigh tissue at the end of the study. There were responses (P,0.001) in all tissues to the graded addition of dietary Se, although rates of accumulation were highest in birds offered SY. There were notable differences between tissue types and treatments in the distribution of SeMet and SeCys, and the activity of tissue and erythrocyte GSH-Px (P,0.05). SeCys was the predominant form of Se in visceral tissue and SeMet the predominant form in breast tissue. SeCys contents were greater in thigh when compared with breast tissue. Muscle tissue GSH-Px activities mirrored SeCys contents. Despite treatment differences in tissue GSH-Px activity, there were no effects of treatment on any meat quality parameter.
Resumo:
The burning of tobacco creates various types of free radicals that have been reported to be biologically active. Some radicals are transient but can initiate catalytic cycles that generate other free radicals. Other radicals are environmentally persistent and can exist in total particulate matter (TPM) for extended periods. In spite of their importance, little is known concerning the precursors of these radicals or under what pyrolysis/combustion conditions they are formed. We performed studies of the formation of radicals from the gas-phase pyrolysis and oxidative pyrolysis of hydroquinone (HQ) and catechol (CT) between 750 and 1000 °C and phenol from 500 to 1000 °C. The initial electron paramagnetic resonance (EPR) spectra were complex, indicating the presence of multiple radicals. Using matrix annealing and microwave power saturation techniques, phenoxyl, cyclopentadienyl, and peroxyl radicals were identifiable, but only cyclopentadienyl radicals were stable above 750 °C.
Resumo:
Iron is both an essential nutrient for the growth of microorganisms, as well as a dangerous metal due to its capacity to generate reactive oxygen species (ROS) via the Fenton reaction. For these reasons, bacteria must tightly control the uptake and storage of iron in a manner that restricts the build-up of ROS. Therefore, it is not surprising to find that the control of iron homeostasis and responses to oxidative stress are coordinated. The mechanisms concerned with these processes, and the interactions involved, are the subject of this review.
Resumo:
The stannylene [SnR2] (R = CH(SiMe3)2) reacts in different ways with the three dodecacarbonyls of the iron triad: [Fe3(CO)12] gives [Fe2(CO)8(μ-SnR2)], [Ru3(CO)12] gives the planar pentametallic cluster [Ru3(CO)10(μ-SnR2)2], for which a full structural analysis is reported, while [Os3(CO)12] fails to react. Different products are also obtained from three nitrile derivatives: [Fe3-(CO)11(MeCN)] gives [Fe2(CO)6(μ-SnR2)2], which has a structure significantly different from that of known Fe2Sn2 clusters, [Ru3(CO)10(MeCN)2] gives the pentametallic cluster described above, while [Os3(CO)10(MeCN)2] gives the isostructural osmium analogue, which shows the unusual feature of a CO group bridging two osmium atoms.
Resumo:
Cluster expansion of [Os3H2(CO)10] with [SnR2][R = CH(SiMe3)2] take place in high yield to give [Os3SnH2(CO)10R2], the first closed triosmium–main-group metal cluster to be structurally characterized; a novel feature is the presence of a hydrogen atom bridging the tin atom and one of the osmium atoms.
Resumo:
Tannic acid (0.1–1%, w/w) and gallic acid (0.3–1%, w/w) were added to skim milk prior to acidification with GDL. The acid gelation of tannic and gallic acid fortified milk had a faster gelation time in comparison with the control gel without phenolic compounds. The addition of tannic acid and gallic acid (up to 0.8%) to the milk resulted in a higher storage modulus (G′), decrease in the water mobility (T2 time) and had no significant effect on the syneresis index (SI). However, the inclusion of 1% gallic acid resulted in a significant decrease in G′, a significant increase in the SI and a wider T2 distribution. Lowering the temperature of the gels from 30 to 5 °C caused the G′ for the gels with gallic and tannic acid to increase significantly in comparison with the control, possibly due to increased hydrogen bonding in the presence of phenolic compounds
Resumo:
Several new coordinatively unsaturated iron(II) complexes of the types [Fe(EN-iPr)X2] (E = P, S, Se; X = Cl, Br) and [Fe(ON-iPr)2X]X containing bidentate EN ligands based on N-(2-pyridinyl)aminophosphines as well as oxo, thio, and seleno derivatives thereof were prepared and characterized by NMR spectroscopy and X-ray crystallography. Mössbauer spectroscopy and magnetization studies confirmed their high-spin nature with magnetic moments very close to 4.9 μB, reflecting the expected four unpaired d-electrons in all these compounds. Stable low-spin carbonyl complexes of the types [Fe(PN-iPr)2(CO)X]X (X = Cl, Br) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2X2] (X = Br) were obtained by reacting cis-Fe(CO)4X2 with the stronger PN donor ligands, but not with the weaker EN donor ligands (E = O, S, Se). Furthermore, the reactivity of [Fe(PN-iPr)X2] toward CO was investigated by IR spectroscopy. Whereas at room temperature no reaction took place, at −50 °C [Fe(PN-iPr)X2] added readily CO to form, depending on the nature of X, the mono- and dicarbonyl complexes [Fe(PN-iPr)(X)2(CO)] (X = Cl) and [Fe(PN-iPr)(CO)2X2] (X = Cl, Br), respectively. In the case of X = Br, two isomeric dicarbonyl complexes, namely, cis-CO,trans-Br-[Fe(PN-iPr)(CO)2Br2] (major species) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2Br2] (minor species), are formed. The addition of CO to [Fe(PN-iPr)X2] was investigated in detail by means of DFT/B3LYP calculations. This study strongly supports the experimental findings that at low temperature two isomeric low-spin dicarbonyl complexes are formed. For kinetic reasons cis,trans-[Fe(PN-iPr)(CO)2Br2] releases CO at elevated temperature, re-forming [Fe(PN-iPr)Br2], while the corresponding cis,cis isomer is stable under these conditions.
Resumo:
Species-rich lowland hay meadows are of conservation importance for both plants and invertebrates; however, they have declined in area across Europe as a result of conversion to other land uses and management intensification. The re-creation of these grasslands on ex-arable land provides a valuable approach to increasing the extent and conservation value of this threatened habitat. Over a 3-year period a replicated block design was used to test whether introducing seeds promoted the re-creation of both plant and phytophagous beetle assemblages typical of a target hay meadow. Seeds were harvested from local hay meadows, and applied to experimental plots in the form of either green hay or brush harvesting seeds. Green hay spreading achieved the greatest success in re-creating plant and phytophagous beetle assemblages. While re-creation success increased over time for both taxa, for the phytophagous beetles the greatest increase in re-creation success relative to the establishment year also occurred where green hay was applied. We also considered the phytophagous beetles in terms of functional traits that describe host plant specificity, larval feeding location and dispersal. Phytophagous beetle functional trait composition was most similar to the target hay meadow assemblage where some form of seed addition was used, i.e. hay spreading or brush harvested seeds. This study identified the importance of introducing target plant species as a mechanism to promote the re-creation of phytophagous beetle communities. Seed addition methods (e.g. green hay spreading) are crucial to successful hay meadow re-creation.
Resumo:
Background: Fruit and vegetable-rich diets are associated with a reduced cardiovascular disease (CVD) risk. This protective effect may be a result of the phytochemicals present within fruits and vegetables (F&V). However, there can be considerable variation in the content of phytochemical composition of whole F&V depending on growing location, cultivar, season and agricultural practices, etc. Therefore, the present study investigated the effects of consuming fruits and vegetables as puree-based drinks (FVPD) daily on vasodilation, phytochemical bioavailability, antioxidant status and other CVD risk factors. FVPD was chosen to provide a standardised source of F&V material that could be delivered from the same batch to all subjects during each treatment arm of the study. Methods: Thirty-nine subjects completed the randomised, controlled, cross-over dietary intervention. Subjects were randomised to consume 200 mL of FVPD (or fruit-flavoured control), daily for 6 weeks with an 8-week washout period between treatments. Dietary intake was measured using two 5-day diet records during each cross-over arm of the study. Blood and urine samples were collected before and after each intervention and vasodilation assessed in 19 subjects using laser Doppler imaging with iontophoresis. Results: FVPD significantly increased dietary vitamin C and carotenoids (P < 0.001), and concomitantly increased plasma α- and β-carotene (P < 0.001) with a near-significant increase in endothelium-dependent vasodilation (P = 0.060). Conclusions: Overall, the findings obtained in the present study showed that FVPD were a useful vehicle to increase fruit and vegetable intake, significantly increasing dietary and plasma phytochemical concentrations with a trend towards increased endothelium-dependent vasodilation.
Resumo:
Epidemiological studies indicate that diets rich in fruits and vegetables (F&V) are protective against cardiovascular diseases (CVD). Pureed F&V products retain many beneficial components, including flavonoids, carotenoids, vitamin C and dietary fibres. This study aimed to establish the physiological effects of acute ingestion of F&V puree-based drink (FVPD) on vasodilation, antioxidant status, phytochemical bioavailability and other CVD risk factors. 24 Subjects, aged 30-70 years, completed the randomised, single-blind, controlled, crossover test meal study. Subjects consumed 400 ml FVPD, or fruit-flavoured sugar-matched control, after following a low-flavonoid diet for 5 days. Blood and urine samples were collected throughout the study day and vascular reactivity was assessed at 90-minute intervals using laser Doppler iontophoresis (LDI). FVPD significantly increased plasma vitamin C (P=0.002) and total nitrate/nitrite (P=0.001) concentrations. There was a near significant time by treatment effect on ex vivo LDL oxidation (P=0.068), with a longer lag phase after consuming FVPD. During the 6 hours after juice consumption the antioxidant capacity of plasma increased significantly (P=0.003) and there was a simultaneous increase in plasma and urinary phenolic metabolites (P<0.05). There were significantly lower glucose and insulin peaks after ingestion of FVPD compared with control (P=0.019 and P=0.003) and a trend towards increased endothelium-dependent vasodilation following FVPD consumption (P=0.061). Overall, FVPD consumption significantly increased plasma vitamin C and total nitrate/nitrite concentrations, with a trend towards increased endothelium-dependent vasodilation. Pureed F&V products are useful vehicles for increasing micronutrient status, plasma antioxidant capacity and in vivo NO generation, which may contribute to CVD risk reduction.
Resumo:
Aims: To investigate the effect of the oxidative stress of ozone on the microbial inactivation, cell membrane integrity and permeability and morphology changes of Escherichia coli. Methods and Results: Escherichia coli BW 25113 and its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK genes were treated with ozone at a concentration of 6 lg ml)1 for a period up to 240 s. A significant effect of ozone exposure on microbial inactivation was observed. After ozonation, minor effects on the cell membrane integrity and permeability were observed, while scanning electron microscopy analysis showed slightly altered cell surface structure. Conclusions: The results of this study suggest that cell lysis was not the major mechanism of microbial inactivation. The deletion of oxidative stress–related genes resulted in increased susceptibility of E. coli cells to ozone treatment, implying that they play an important role for protection against the radicals produced by ozone. However, DnaK that has previously been shown to protect against oxidative stress did not protect against ozone treatment in this study. Furthermore, RpoS was important for the survival against ozone. Significance and Impact of the Study: This study provides important information about the role of oxidative stress in the responses of E. coli during ozonation.
Resumo:
Prostate cancer is one of the most frequent cancer types in Western societies and predominately occurs in the elderly male. The strong age-related increase of prostate cancer is associated with a progressive accumulation of oxidative DNA damage which is presumably supported by a decline of the cellular antioxidative defence during ageing. Risk of developing prostate cancer is much lower in many Asian countries where soy food is an integral part of diet. Therefore, isoflavones from soy were suggested to have chemopreventive activities in prostate cells. Here, we have investigated the hypothesis that the soy-isoflavone genistein could protect DNA of LAPC-4 prostate cells from oxidative stress-related damage by enhancing the expression of antioxidative genes and proteins. A 24 h preincubation with genistein (1-30 microM) protected cells from hydrogen peroxide-induced DNA damage, as determined by the comet assay. Analysis of two cDNA macroarrays, each containing 96 genes of biotransformation and stress response, revealed a modulated expression of 3 genes at 1 microM and of 19 genes at 10 microM genistein. Real-time PCR confirmed the induction of three genes encoding products with antioxidant activities, namely glutathione reductase (2.7-fold), microsomal glutathione S-transferase 1 (1.9-fold) and metallothionein 1X (6.3-fold), at 1-30 microM genistein. 17Beta-estradiol, in contrast, decreased the expression of metallothionein 1X at 0.3 microM (2.0-fold), possibly pointing to an estrogen receptor-mediated regulation of this gene. Immunocytochemical staining revealed an induction of metallothionein proteins at 30 microM genistein, while their intracellular localization was unaffected. Metallothioneins were previously found to protect cells from hydrogen peroxide-induced DNA damage. Hence, our findings indicate that genistein protects prostate cells from oxidative stress-related DNA damage presumably by inducing the expression of antioxidative products, such as metallothioneins. Genistein, therefore, might counteract the age-related decline of important antioxidative defence systems which in turn maintain DNA integrity.
Resumo:
Olive oil, an important component of the Mediterranean diet, is rich in polyphenols and is known to possess positive health effects relative to other dietary fats. In addition, the leaves of the olive plant (Olea europaea) contain similar phenolics (oleuropein, luteolin-7-glucoside, apigenin-7-glucoside, verbascoside and hydroxytyrosol) to those of olives and olive oil, although at higher concentrations. For example, the most abundant is the secoiridoid, oleuropein, representing 1–14% of olive leaf weight vs. 0.005–0.12% in olive oil. Although currently considered a waste product of the olive oil industry, recent research has suggested beneficial effects of phenolic-rich olive leaf extracts (OLE) in modifying cardiovascular risk biomarkers such as blood pressure, hyperglycaemia, oxidative stress and inflammation, as well as improving vascular function and lipid profiles. Despite this, data regarding the biological actions of OLE has mostly derived from animal, in vitro and ex vivo studies, with limited evidence deriving from human trials. Although the absorption and metabolism of olive oil phenolics has been investigated, less is known about the bioavailability of phenolics from OLE, limiting the interpretation of existing in vitro and ex vivo data. The current review will begin by describing the phenolic composition of olive leaves in comparison with that of the better studied olive oil. It will then review the effects of OLE on cardiovascular risk factors, covering both animal and human studies and will end by considering potential mechanisms of action
Resumo:
We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.
Resumo:
Sesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualitiesfor future crop production are discussed.