948 resultados para OPEN-LABEL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the changes in the Visual Field Index (VFI) in eyes with perimetric glaucomatous progression, and to compare these against stable glaucoma patients.

PATIENTS AND METHODS: Consecutive patients with open angle glaucoma with a minimum of 6 reliable visual fields and 2 years of follow-up were identified. Perimetric progression was assessed by 4 masked glaucoma experts from different units, and classified into 3 categories: "definite progression," "suspected progression," or "no progression." This was compared with the Glaucoma Progression Analysis (GPA) II and VFI linear regression analysis, where progression was defined as a negative slope with significance of <5%.

RESULTS: Three hundred ninety-seven visual fields from 51 eyes of 39 patients were assessed. The mean number of visual fields was 7.8 (SD 1.1) per eye, and the mean follow-up duration was 63.7 (SD 13.4) months. The mean VFI linear regression slope showed an overall statistically significant difference (P<0.001, analysis of variance) for each category of progression. Using expert consensus opinion as the reference standard, both VFI analysis and GPA II had high specificity (0.93 and 0.90, respectively), but relatively low sensitivity (0.45 and 0.41, respectively).

CONCLUSIONS: The mean VFI regression slope in our cohort of eyes without perimetric progression showed a statistically significant difference compared with those with suspected and definite progression. VFI analysis and GPA II both had similarly high specificity but low sensitivity when compared with expert consensus opinion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding of their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g. G-quadruplexes, in different environments (Fig. 1). We further demonstrate the use of the metamaterials for fingerprinting and detection of arginine-glycine-glycine domain of nucleolin, a cancer biomarker which specifically binds to a G-quadruplex, with the picomolar sensitivity. The dual-mode nanosensor will significantly contribute to unraveling the complexes of the conformational dynamics of biomolecules as well as to improving specificity of biodetection assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of binding recognition and conformation of biomolecules is of paramount important in understanding of their vital functions in complex biological systems. By enabling sub-wavelength light localization and strong local field enhancement, plasmonic biosensors have become dominant tools used for such analysis owing to their label-free and real-time attributes1,2. However, the plasmonic biosensors are not well-suited to provide information regarding conformation or chemical fingerprint of biomolecules. Here, we show that plasmonic metamaterials, consisting of periodic arrays of artificial split-ring resonators (SRRs)3, can enable capabilities of both sensing and fingerprinting of biomolecules. We demonstrate that by engineering geometry of individual SRRs, localized surface plasmon resonance (LSPR) frequency of the metamaterials could be tuned to visible-near infrared regimes (Vis-NIR) such that they possess high local field enhancement for surface-enhanced Raman scattering spectroscopy (SERS). This will provide the basis for the development of a dual mode label-free conformational-resolving and quantitative detection platform. We present here the ability of each sensing mode to independently detect binding adsorption and to identify different conformational states of Guanine (G)-rich DNA monolayers in different environment milieu. Also shown is the use of the nanosensor for fingerprinting and detection of Arginine-Glycine-Glycine (RGG) peptide binding to the G-quadruplex aptamer. The dual-mode nanosensor will significantly contribute to unraveling the complexes of the conformational dynamics of biomolecules as well as to improving specificity of biodetection assays that the conventional, population-averaged plasmonic biosensors cannot achieve.