951 resultados para Nulliparous Continent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimized regional climate simulations are conducted using the Polar MM5, a version of the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5), with a 60-km horizontal resolution domain over North America during the Last Glacial Maximum (LGM, 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). The objective is to describe the LGM annual cycle at high spatial resolution with an emphasis on the winter atmospheric circulation. Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. Polar MM5 produces a substantially different atmospheric response to the LGM boundary conditions than CCM3 and other recent GCM simulations. In particular, from November to April the upper-level flow is split around a blocking anticyclone over the LIS, with a northern branch over the Canadian Arctic and a southern branch impacting southern North America. The split flow pattern is most pronounced in January and transitions into a single, consolidated jet stream that migrates northward over the LIS during summer. Sensitivity experiments indicate that the winter split flow in Polar MM5 is primarily due to mechanical forcing by LIS, although model physics and resolution also contribute to the simulated flow configuration. Polar MM5 LGM results are generally consistent with proxy climate estimates in the western United States, Alaska, and the Canadian Arctic and may help resolve some long-standing discrepancies between proxy data and previous simulations of the LGM climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents a 5-yr climatology of 7-day back trajectories started from the Northern Hemisphere subtropical jet. These trajectories provide insight into the seasonally and regionally varying angular momentum and potential vorticity characteristics of the air parcels that end up in the subtropical jet. The trajectories reveal preferred pathways of the air parcels that reach the subtropical jet from the tropics and the extratropics and allow estimation of the tropical and extratropical forcing of the subtropical jet. The back trajectories were calculated 7 days back in time and started every 6 h from December 2005 to November 2010 using the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) dataset as a basis. The trajectories were started from the 345-K isentrope in areas where the wind speed exceeded a seasonally varying threshold and where the wind shear was confined to upper levels. During winter, the South American continent, the Indian Ocean, and the Maritime Continent are preferred areas of ascent into the upper troposphere. From these areas, air parcels follow an anticyclonic pathway into the subtropical jet. During summer, the majority of air parcels ascend over the Himalayas and Southeast Asia. Angular momentum is overall well conserved for trajectories that reach the subtropical jet from the deep tropics. In winter and spring, the hemispheric-mean angular momentum loss amounts to approximately 6%; in summer, it amounts to approximately 18%; and in fall, it amounts to approximately 13%. This seasonal variability is confirmed using an independent potential vorticity–based method to estimate tropical and extratropical forcing of the subtropical jet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents an integrated mineralogical-geochemical data base on fine-grained sediments transported by all major rivers of southern Africa, including the Zambezi, Okavango, Limpopo, Olifants, Orange and Kunene. Clay mineralogy, bulk geochemistry, Sr and Nd isotopic signatures of river mud, considered as proxy of suspended load, are used to investigate the influence of source-rock lithology and weathering intensity on the composition of clay and silt produced in subequatorial to subtropical latitudes. Depletion in mobile alkali and alkaline-earth metals, minor in arid Namibia, is strong in the Okavango, Kwando and Upper Zambezi catchments, where recycling is also extensive. Element removal is most significant for Na, and to a lesser extent for Sr. Depletion in K, Ca and other elements, negligible in Namibia, is moderate elsewhere. The most widespread clay minerals are smectite, dominant in muds derived from Karoo or Etendeka flood basalts, or illite and chlorite, dominant in muds derived from metasedimentary rocks of the Damara Orogen or Zimbabwe Craton. Kaolinite represents 30-40% of clay minerals only in Okavango and Upper Zambezi sediments sourced in humid subequatorial Angola and Zambia. After subtracting the effects of recycling and of local accumulation of authigenic carbonates in soils, the regional distribution of clay minerals and chemical indices consistently reflect weathering intensity primarily controlled by climate. Bulk geochemistry identifies most clearly volcaniclastic sediments and mafic sources in general, but cannot discriminate the other sources of detritus in detail. Instead, Sr and Nd isotopic fingerprints are insensitive to weathering, and thus mirror faithfully the tectonic structure of the southern African continent. Isotopic tools thus represent a much firmer basis than bulk geochemistry or clay mineralogy in the provenance study of mudrocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von Adolf Sommerfeld

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 1907–2001 summer-to-summer surface air temperature variability in the eastern part of southern South America (SSA, partly including Patagonia) is analysed. Based on records from instruments located next to the Atlantic Ocean (36°S–55°S), we define indices for the interannual and interdecadal timescales. The main interdecadal mode reflects the late-1970s cold-to-warm climate shift in the region and a warm-to-cold transition during early 1930s. Although it has been in phase with the Pacific Decadal Oscillation (PDO) index since the 1960s, they diverged in the preceding decades. The main interannual variability index exhibits high spectral power at ~3.4 years and is representative of temperature variability in a broad area in the southern half of the continent. Eleven-years running correlation coefficients between this index and December-to-February (DJF) Niño3.4 show significant decadal fluctuations, out-of-phase with the running correlation with a DJF index of the Southern Annular Mode. The main interannual variability index is associated with a barotropic wavetrain-like pattern extending over the South Pacific from Oceania to SSA. During warm (cold) summers in SSA, significant anticyclonic (cyclonic) anomalies tend to predominate over eastern Australia, to the north of the Ross Sea, and to the east of SSA, whereas anomalous cyclonic (anticyclonic) circulation is observed over New Zealand and west of SSA. This teleconnection links warm (cold) SSA anomalies with dry (wet) summers in eastern Australia. The covariability seems to be influenced by the characteristics of tropical forcing; indeed, a disruption has been observed since late 1970s, presumably due to the PDO warm phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.