1000 resultados para Nongraphitic Carbon
Resumo:
The diamond-like carbon (DLC) films with different thicknesses on 9Crl8 bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickers indentation. nanoin-dentation and nanoscratch tests were used to characterize the DLC films with a wide range of applied loads. Mechanical and tribological behaviors of these submicron films were investigated and interpreted. The hardnesses of 9Crl8 and DLC, determined by nanoindentation, are approximately 8GPa and 60GPa respectively; their elastic moduli are approximately 25OGPa and 600GPa respectively. The friction coefficients of 9Crl8, DLC. organic coating, determined by nanoscratch, are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation and nanoscratch tests can provide more information about the near-surface elastic-plastic deformation, friction and wear properties. The correlation of mechanical properties and scratch resistance of DLC films on 9Crl8 steels can provide an assessment for the load-carrying capacity and wear resistance
Resumo:
We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in nonpolar organic solvents. The active conjugated groups, which are highly attracted to the graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As our ultimate aim is to disperse and stabilize nanotubes in siloxane matrix (polymer and cross-linked elastomer), both surfactant molecules were made with long siloxane tails to facilitate solubility and steric stabilization. We show that the pyrene-siloxane surfactant is very effective in dispersing multiwall nanotubes, while the porphyrin-siloxane makes single-wall nanotubes soluble, both in petroleum ether and in siloxane matrix.
Resumo:
A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.
Resumo:
Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.
Resumo:
Multi-walled carbon nanotubes (CNTs) have been successfully introduced into hydroxyapatite (HA) coatings using laser surface alloying. It is evident from transmission electron microscopy (TEM) observations that the CNTs present in the matrix still keep their multi-walled cylinder graphic structure, although they undergo the laser irradiation. Scratching test results indicated that the as-alloyed HA composite coatings exhibit improved wear resistance and lower friction coefficient with increasing the amount of CNTs in the precursor material powders. These composites have potential applications in the field of coating materials for metal implants under high-load-bearing conditions. (c) 2006 Elsevier Ltd. All rights reserved.
A quantum dot sensitized solar cell based on vertically aligned carbon nanotube templated ZnO arrays
Resumo:
We report on a quantum dot sensitized solar cell (QDSSC) based on ZnO nanorod coated vertically aligned carbon nanotubes (VACNTs). Electrochemical impedance spectroscopy shows that the electron lifetime for the device based on VACNT/ZnO/CdSe is longer than that for a device based on ZnO/CdSe, indicating that the charge recombination at the interface is reduced by the presence of the VACNTs. Due to the increased surface area and longer electron lifetime, a power conversion efficiency of 1.46% is achieved for the VACNT/ZnO/CdSe devices under an illumination of one Sun (AM 1.5G, 100 mW/cm2). © 2010 Elsevier B.V.
Resumo:
The integration of high yield, uniform and preferential growth of vertically aligned carbon nanotubes (VACNT) on low stress micromechanical structures was analyzed. A combination of electron-beam crosslinked surface micromachining and direct current plasma enhanced chemical vapor deposition of electric field aligned carbon nanotubes was used for the analysis. The selective placement of high yield and uniform VACNTs on a partially suspended Ni/SiO2/Ti microstructure was also demonstrated.