964 resultados para Non-load Bearing Walls
Resumo:
Recent data suggest that the clinical course of reactional states in leprosy is closely related to the cytokine profile released locally or systemically by the patients. In the present study, patients with erythema nodosum leprosum (ENL) were grouped according to the intensity of their clinical symptoms. Clinical and immunological aspects of ENL and the impact of these parameters on bacterial load were assessed in conjunction with patients' in vitro immune response to mycobacterial antigens. In 10 out of the 17 patients tested, BI (bacterial index) was reduced by at least 1 log from leprosy diagnosis to the onset of their first reactional episode (ENL), as compared to an expected 0.3 log reduction in the unreactional group for the same MDT (multidrug therapy) period. However, no difference in the rate of BI reduction was noted at the end of MDT among ENL and unreactional lepromatous patients. Accordingly, although TNF-alpha (tumor necrosis factor) levels were enhanced in the sera of 70.6% of the ENL patients tested, no relationship was noted between circulating TNF-alpha levels and the decrease in BI detected at the onset of the reactional episode. Evaluation of bacterial viability of M. leprae isolated from the reactional lesions showed no growth in the mouse footpads. Only 20% of the patients demonstrated specific immune response to M. leprae during ENL. Moreover, high levels of soluble IL-2R (interleukin-2 receptor) were present in 78% of the patients. Circulating anti-neural (anti-ceramide and anti-galactocerebroside antibodies) and anti-mycobacterial antibodies were detected in ENL patients' sera as well, which were not related to the clinical course of disease. Our data suggest that bacterial killing is enhanced during reactions. Emergence of specific immune response to M. leprae and the effective role of TNF-alpha in mediating fragmentation of bacteria still need to be clarified.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.
Resumo:
The deregulation of electricity markets has diversified the range of financial transaction modes between independent system operator (ISO), generation companies (GENCO) and load-serving entities (LSE) as the main interacting players of a day-ahead market (DAM). LSEs sell electricity to end-users and retail customers. The LSE that owns distributed generation (DG) or energy storage units can supply part of its serving loads when the nodal price of electricity rises. This opportunity stimulates them to have storage or generation facilities at the buses with higher locational marginal prices (LMP). The short-term advantage of this model is reducing the risk of financial losses for LSEs in DAMs and its long-term benefit for the LSEs and the whole system is market power mitigation by virtually increasing the price elasticity of demand. This model also enables the LSEs to manage the financial risks with a stochastic programming framework.
Resumo:
This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.
Resumo:
The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.
Resumo:
Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
In competitive electricity markets it is necessary for a profit-seeking load-serving entity (LSE) to optimally adjust the financial incentives offering the end users that buy electricity at regulated rates to reduce the consumption during high market prices. The LSE in this model manages the demand response (DR) by offering financial incentives to retail customers, in order to maximize its expected profit and reduce the risk of market power experience. The stochastic formulation is implemented into a test system where a number of loads are supplied through LSEs.
Resumo:
Demand response is an energy resource that has gained increasing importance in the context of competitive electricity markets and of smart grids. New business models and methods designed to integrate demand response in electricity markets and of smart grids have been published, reporting the need of additional work in this field. In order to adequately remunerate the participation of the consumers in demand response programs, improved consumers’ performance evaluation methods are needed. The methodology proposed in the present paper determines the characterization of the baseline approach that better fits the consumer historic consumption, in order to determine the expected consumption in absent of participation in a demand response event and then determine the actual consumption reduction. The defined baseline can then be used to better determine the remuneration of the consumer. The paper includes a case study with real data to illustrate the application of the proposed methodology.
Resumo:
The effects of Corynebacterium parvum on host protection, tissue reaction and "in vivo" chemotaxis in Schistosoma mansoni infected mice were studied. The C. parvum was given intraperitoneally using a dose of 0.7 mg, twice a week (for 4 weeks), thirty days before (prophylactic treatment) or after infection (curative treatment). The host protection was evaluated through the recovery of adult worms by liver perfusion and was lower in the prophylactic group as compared to the control group (p = 0.018), resulting in 44% protection. The "in vivo" leukocyte response in both prophylactic and curative groups was higher as compared to the infected/non treated group (p = 0.009 and p = 0.003, respectively). Tissue reactions were described in the experimental and control groups, but there were not remarkable differences among them. The possible biological implications and relevance of the findings for the defensive response of the host and control of schistosomiasis are discussed.
Resumo:
The electricity demand in Brazil has been growing. Some studies estimate that through 2035 the energy consumption (the power consumption) should increase 78%. Two distinct actions are necessary to meet this growth: the construction of new generating plants and to reduce electrical losses in the country. As the construction of power plants have a high price, coupled with the growth of (current) environmental concern, electric utilities are investing in reducing losses, both technical and non-technical. In this context, this paper aims to present an overview of nontechnical losses in Brazil and to raise a discussion on the reasons that contribute to energy fraud.
Resumo:
The electric utilities have large revenue losses annually due to commercial losses, which are caused mainly by fraud on the part of consumers and faulty meters. Automatic detection of such losses where there is a complex problem, given the large number of consumers and the high cost of each inspection, not to mention the wear of the relationship between company and consumer. Given the above, this paper aims to briefly present some methodologies applied by utilities to identify consumer frauds.
Resumo:
Most of distribution generation and smart grid research works are dedicated to the study of network operation parameters, reliability among others. However, many of this research works usually uses traditional test systems such as IEEE test systems. This work proposes a voltage magnitude study in presence of fault conditions considering the realistic specifications found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzyprobabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12 bus sub-transmission network.
Resumo:
The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.