987 resultados para Non-Pharmacological
Resumo:
It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R (adj) (2) > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.
Resumo:
BACKGROUND: Large intrathoracic airway defects may be closed using a pedicled latissimus dorsi (LD) flap, with rewarding results. This study addresses the question of whether this holds true for extrathoracic non-circumferential tracheal defects. METHODS: A cervical segment of the trachea of 4 x 1 cm was resected in 9 white male pigs. The defect was stented with a silicone stent for 3 months and closed either by an LD flap alone (group a, n = 3), an LD flap with an attached rib segment covered by pleura (group b, n = 3), or an LD flap reinforced by a perforated polylactide (MacroPore) plate (group c, n = 3). The trachea was assessed by rigid endoscopy at 3 and 4 months and histologically at 4 months postoperatively. RESULTS: The degree of stenosis at the level of the reconstruction at 4 months was 25, 50 and 75% in group a, 15, 50 and 60% in group b, and 20, 95 and 95% in group c, respectively. The percentage of the defect covered by columnar epithelium was 100% in all animals of group a, 60, 100 and 100% in group b, and 10, 0 and 0% in group c. Resorption of the rib was seen in all animals of group b and obstructive inflammatory polyps were found in 2 animals of group c. CONCLUSION: Pedicled LD flaps provided less satisfactory results for closure of large non-circumferential extrathoracic airway defects than observed after intrathoracic reconstruction. A pedicled rib segment added to the LD flap did not improve the results obtained from LD flap repair alone, and an embedded MacroPore prosthesis may result in severe airway stenosis due to plate migration and intense inflammatory reaction protruding into the tracheal lumen.
Resumo:
Trypanosome infections were sought in 46 non-human primates captured principally in Amazonian Brazil. Twenty-two (47.8%) were infected with four Trypanosoma species: T. cruzi, T. minasense, T. devei and T. rangeli. These preliminary results confirmed the high prevalence and diversity of natural infections with trypanosomes in primates from Brazilian Amazon and were the first formal record of simian infections with trypanosomes in the State of Acre. The presence of T. cruzi-like and T. rangeli-like parasites are recorded in four new hosts.
Resumo:
Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly.
Resumo:
BACKGROUND: We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound. RESULTS: In all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6 h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased. CONCLUSION: These findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep.
Resumo:
The feasibility of three-dimensional (3D) whole-heart imaging of the coronary venous (CV) system was investigated. The hypothesis that coronary magnetic resonance venography (CMRV) can be improved by using an intravascular contrast agent (CA) was tested. A simplified model of the contrast in T(2)-prepared steady-state free precession (SSFP) imaging was applied to calculate optimal T(2)-preparation durations for the various deoxygenation levels expected in venous blood. Non-contrast-agent (nCA)- and CA-enhanced images were compared for the delineation of the coronary sinus (CS) and its main tributaries. A quantitative analysis of the resulting contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) in both approaches was performed. Precontrast visualization of the CV system was limited by the poor CNR between large portions of the venous blood and the surrounding tissue. Postcontrast, a significant increase in CNR between the venous blood and the myocardium (Myo) resulted in a clear delineation of the target vessels. The CNR improvement was 347% (P < 0.05) for the CS, 260% (P < 0.01) for the mid cardiac vein (MCV), and 430% (P < 0.05) for the great cardiac vein (GCV). The improvement in SNR was on average 155%, but was not statistically significant for the CS and the MCV. The signal of the Myo could be significantly reduced to about 25% (P < 0.001).
Resumo:
The expression of P2Z/P2X7 purinoceptor in different cell types is well established. This receptor is a member of the ionotropic P2X receptor family, which is composed by seven cloned receptor subtypes (P2X1 - P2X7). Interestingly, the P2Z/P2X7 has a unique feature of being linked to a non-selective pore which allows the passage of molecules up to 900 Da depending on the cell type. Early studies of P2Z/P2X7 purinoceptor were exclusively based on classical pharmacological studies but the recent tools of molecular biology have enriched the analysis of the receptor expression. The majority of assays and techniques chosen so far to study the expression of P2Z/P2X7 receptor explore directly or indirectly the effects of the opening of P2Z/P2X7 linked pore. In this review we describe the main techniques used to study the expression and functionality of P2Z/P2X7 receptor. Additionally, the increasing need and importance of a multifunctional analysis of P2Z/P2X7 expression based on flow cytometry technology is discussed, as well as the adoption of a more complete analysis of P2Z/P2X7 expression involving different techniques.
Resumo:
In recent years, management of abdominal pain in emergency care units (ECU) has undergone a radical change. Chronic work overload of ECU and increase in severity and complexity of cases required an optimal medical imaging method, such as ultrasound, to establish an accurate diagnosis as quickly as possible. A great variety of causes may cause acute abdominal pain and the role of sonography is to accurately distinguish between these aetiologies. For the application of sonography, perhaps more so than with other imaging methods, a perfect knowledge of sonographical characteristics and technical possibilities is essential to achieve an optimal answer. The purpose of this review is to present and discuss the sonographic characteristics of extra-digestive causes of acute abdominal pain such as splenic infarction, thoracic pathologies, urinary and gynaecologic diseases or retroperitoneal pathologies.
Resumo:
A Review of the Peri-operative Non Medical Workforce within Northern Ireland Encompassing the Twelve Acute Trusts
Resumo:
Using cryo-electron microscopy we reconstructed the three-dimensional trajectories adopted in cryovitrified solutions by double-stranded DNA molecules in which the backbone of one strand lacked a phosphate at regular intervals of 20 nucleotides. The shape of such nicked DNA molecules was compared with that of DNA molecules with exactly the same sequence but without any single-stranded scissions. Upon changing the salt concentration we observed opposite effects of charge neutralization on nicked and non-nicked DNA. In low salt solutions (10 mM Tris-HCl, 10 mM NaCl) the applied dense nicking caused ca 3.5-fold reduction of the DNA persistence length as compared with non-nicked DNA. Upon increasing the salt concentration (to 150 mM NaCl and 10 mM MgCl2) the persistence length of non-nicked DNA appreciably decreased while that of nicked DNA molecules increased by a factor of 2.
Non-nest mate discrimination and clonal colony structure in the parthenogenetic ant Cerapachys biroi
Resumo:
Understanding the interplay between cooperation and conflict in social groups is a major goal of biology. One important factor is genetic relatedness, and animal societies are usually composed of related but genetically different individuals, setting the stage for conflicts over reproductive allocation. Recently, however, it has been found that several ant species reproduce predominantly asexually. Although this can potentially give rise to clonal societies, in the few well-studied cases, colonies are often chimeric assemblies of different genotypes, due to worker drifting or colony fusion. In the ant Cerapachys biroi, queens are absent and all individuals reproduce via thelytokous parthenogenesis, making this species an ideal study system of asexual reproduction and its consequences for social dynamics. Here, we show that colonies in our study population on Okinawa, Japan, recognize and effectively discriminate against foreign workers, especially those from unrelated asexual lineages. In accord with this finding, colonies never contained more than a single asexual lineage and average pairwise genetic relatedness within colonies was extremely high (r = 0.99). This implies that the scope for social conflict in C. biroi is limited, with unusually high potential for cooperation and altruism.
Resumo:
SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.