968 resultados para Nerve growth factor
Resumo:
Messenger RNAs coding for growth factors and receptor tyrosine kinases were measured by quantitative competitive and by semi-quantitative reverse-transcription polymerase chain reaction in whole and dissected chick inner ears. The fibroblast growth factor (FGF) receptor 1 chick embryonic kinase (CEK) 1 was expressed in all structures examined (otocyst, hatchling whole cochlea, cochlear nerve ganglion, and cochlear and vestibular sensory epithelia), although slightly more heavily in the otocyst. The related fibroblast growth factor receptors CEK 2 and 3 were preferentially expressed in the nerve ganglion and in the vestibular sensory epithelium, respectively. FGF 1 mRNA was low in early development, increasing to mature levels at around embryonic age 11 days, while FGF2, mRNA was expressed at constant levels at all ages. In response to ototoxic damage, FGF1 mRNA levels were increased in the early damaged cochlear sensory epithelium. Immunohistochemistry for CEK1 showed that normal hair cells expressed the receptor heavily on the hair cell stereocilia, while with early damage, CEK1 came to be expressed heavily on the apical surfaces of the supporting cells. In normal chicks, the CEK4 and CEK8 eph-class receptor tyrosine kinases were expressed relatively heavily by the cochlear nerve ganglion, and CEK10 was expressed relatively heavily by the cochlear hair cell sensory epithelium. The results suggest that the FGF system may be involved in the response of the cochlear epithelium to ototoxic damage. The eph-class receptor tyrosine kinase CEK10 may be involved in cell interactions in the cochlear sensory epithelium, while CEK4 and CEK8 may play a role in the cochlear innervation.
Resumo:
The basic biology of the fibroblast growth factor (FGF) receptors and their splice variants is first reviewed, followed by a review of the known roles of FGFs in the inner ear. They include induction of the otocyst by FGF19, followed by FGF3 in further development of the otocyst. In later development, FGF3 or FGF10 acting on FGF receptor 2b is likely to be involved in development of the walls of the cochlear spaces, while FGF receptor 3 is involved in differentiation of the pillar cells of the organ of Corti. FGF1 and FGF2 act as trophic factors for the developing cochlear nerve fibres. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
After peripheral nerve injury in adult mammals, reestablishment of functional connections depends on several parameters including neurotrophic factors, the extracellular matrix, and hormones. However, little is known about the contribution of hormones to peripheral nerve regeneration. Thyroid hormones, which are required for the development and maturation of the central nervous system, are also important for the development of peripheral nerves. The action of triiodothyronine (T3) on responsive cells is mediated through nuclear thyroid hormone receptors (TRs) which modulate the expression of specific genes in target cells. Thus, to study the effect of T3, it is first necessary to know whether the target tissues possess TRs. The fact that sciatic nerve cells possess functional TRs suggests that these cells can respond to T3 and, as a consequence, that thyroid hormone may be involved in peripheral nerve regeneration. The silicone nerve guide model provides an excellent system to study the action of local administration of T3. Evidence from such studies demonstrate that animals treated locally with T3 at the level of transection have more complete regeneration of sciatic nerve and better functional recovery. Among the possible regulatory mechanisms by which T3 enhances peripheral nerve regeneration is rapid action on both axotomized neurons and Schwann cells which, in turn, produce a lasting and stimulatory effect on peripheral nerve regeneration. It is probable that T3 up- or down-regulates gene expression of one or more growth factors, extracellular matrix, or cell adhesion molecules, all of which stimulate peripheral nerve regeneration. This could explain the greater effect of T3 on nerve regeneration compared with the effect of any one growth factor or adhesion molecule.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
The therapeutic potential of adult stem cells may become a relevant option in clinical care in the future. In hand and plastic surgery, cell therapy might be used to enhance nerve regeneration and help surgeons and clinicians to repair debilitating nerve injuries. Adipose-derived stem cells (ASCs) are found in abundant quantities and can be harvested with a low morbidity. In order to define the optimal fat harvest location and detect any potential differences in ASC proliferation properties, we compared biopsies from different anatomical sites (inguinal, flank, pericardiac, omentum, neck) in Sprague-Dawley rats. ASCs were expanded from each biopsy and a proliferation assay using different mitogenic factors, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was performed. Our results show that when compared with the pericardiac region, cells isolated from the inguinal, flank, omental and neck regions grow significantly better in growth medium alone. bFGF significantly enhanced the growth rate of ASCs isolated from all regions except the omentum. PDGF had minimal effect on ASC proliferation rate but increases the growth of ASCs from the neck region. Analysis of all the data suggests that ASCs from the neck region may be the ideal stem cell sources for tissue engineering approaches for the regeneration of nervous tissue.
Resumo:
Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.
Resumo:
Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved
Resumo:
Abstract Background Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Methods Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Results Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside the tumour, but not the tumour cells grown in vitro. At the tissue level, a few cells (probably macrophages) stained positively with antibodies to PAF-R. Conclusions We suggest that PAF-R-dependent pathways are activated during experimental tumour growth, modifying the microenvironment and the phenotype of the tumour macrophages in such a way as to favour tumour growth. Combination therapy with a PAF-R antagonist and a chemotherapeutic drug may represent a new and promising strategy for the treatment of some tumours.
Resumo:
There is evidence that mesenchymal stem cells (MSCs) can differentiate towards an intervertebral disc (IVD)-like phenotype. We compared the standard chondrogenic protocol using transforming growth factor beta-1 (TGFß) to the effects of hypoxia, growth and differentiation factor-5 (GDF5), and coculture with bovine nucleus pulposus cells (bNPC). The efficacy of molecules recently discovered as possible nucleus pulposus (NP) markers to differentiate between chondrogenic and IVD-like differentiation was evaluated. MSCs were isolated from human bone marrow and encapsulated in alginate beads. Beads were cultured in DMEM (control) supplemented with TGFß or GDF5 or under indirect coculture with bNPC. All groups were incubated at low (2 %) or normal (20 %) oxygen tension for 28 days. Hypoxia increased aggrecan and collagen II gene expression in all groups. The hypoxic GDF5 and TGFß groups demonstrated most increased aggrecan and collagen II mRNA levels and glycosaminoglycan accumulation. Collagen I and X were most up-regulated in the TGFß groups. From the NP markers, cytokeratin-19 was expressed to highest extent in the hypoxic GDF5 groups; lowest expression was observed in the TGFß group. Levels of forkhead box F1 were down-regulated by TGFß and up-regulated by coculture with bNPC. Carbonic anhydrase 12 was also down-regulated in the TGFß group and showed highest expression in the GDF5 group cocultured with bNPC under hypoxia. Trends in gene expression regulation were confirmed on the protein level using immunohistochemistry. We conclude that hypoxia and GDF5 may be suitable for directing MSCs towards the IVD-like phenotype.
Resumo:
Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490
Resumo:
Background: Activation of the sympathetic nervous system (SNS) in response to chronic biobehavioral stress results in high levels of catecholamines and persistent activation of adrenergic signaling, which promotes tumor growth and progression. However it is unknown how catecholamine levels within the tumor exceed systemic levels in circulation. I hypothesized that neo-innervation of tumors is required for stress-mediated effects on tumor growth. Results: First, I examined whether sympathetic nerves are present in human ovarian cancer samples as well as orthotopic ovarian cancer models. Immunohistochemical (IHC) staining for neurofilament revealed that catecholaminergic neurons are present within tumor tissue. In order to determine whether chronic stress affects the density of nerves in the tumor, I utilized an orthotopic mouse model of ovarian cancer that was exposed to daily restraint stress. IHC analysis revealed that nerve density in tumors increased by more than three-fold in stressed animals versus non-stressed controls. IHC analysis suggested that this results from both recruitment of existing neurons (axonogenesis) as well as new neuron formation (neurogenesis) within the tumor. To determine how tumors are recruiting nerve growth, I utilized a PCR array analysis of 84 nerve growth related genes and their receptors, which showed that stimulation of the SKOV3 ovarian cancer cell line with norepinephrine (NE) leads to increased expression of several neurotrophins, including brain-derived neurotrophic factor (BDNF). Neurite extension assays showed that media conditioned by ovarian cancer cell lines is capable of inducing neurite outgrowth in differentiated neuron-like PC12 cells, and NE treatment of cancer cells potentiates this effect. Norepinephrine-induced neurite extension was abolished after BDNF silencing by siRNA, suggesting that BDNF is critical to tumor cell-induced nerve growth. in vivo BDNF inhibition resulted in complete abrogation of stress-induced increases in tumor weight and nerve density, as well as downstream markers of stress. Discussion: These studies indicate that adrenergic signalling induced by chronic stress promotes neo-innervation in the tumor microenvironment. This results in a mutually beneficial relationship between the tumor cells and neurons. This work is crucial for providing a link between chronic stress and its effects on the tumor and its microenvironment. The data shown here aims to open new venues that can be used in development of therapies designed to block the stress effects on tumor growth.
Resumo:
Growth differentiation factor-9 (GDF-9), an oocyte-secreted member of the transforming growth factor β superfamily, progesterone receptor, cyclooxygenase 2 (Cox2; Ptgs2), and the EP2 prostaglandin E2 (PGE2) receptor (EP2; Ptgerep2) are required for fertility in female but not male mice. To define the interrelationship of these factors, we used a preovulatory granulosa cell culture system in which we added recombinant GDF-9, prostaglandins, prostaglandin receptor agonists, or cyclooxygenase inhibitors. GDF-9 stimulated Cox2 mRNA within 2 h, and PGE2 within 6 h; however, progesterone was not increased until 12 h after addition of GDF-9. This suggested that Cox2 is a direct downstream target of GDF-9 but that progesterone synthesis required an intermediate. To determine whether prostaglandin synthesis was required for progesterone production, we analyzed the effects of PGE2 and cyclooxygenase inhibitors on this process. PGE2 can stimulate progesterone synthesis by itself, although less effectively than GDF-9 (3-fold vs. 6-fold increase over 24 h, respectively). Furthermore, indomethacin or NS-398, inhibitors of Cox2, block basal and GDF-9-stimulated progesterone synthesis. However, addition of PGE2 to cultures containing both GDF-9 and NS-398 overrides the NS-398 block in progesterone synthesis. To further define the PGE2-dependent pathway, we show that butaprost, a specific EP2 agonist, stimulates progesterone synthesis and overrides the NS-398 block. In addition, GDF-9 stimulates EP2 mRNA synthesis by a prostaglandin- and progesterone-independent pathway. Thus, GDF-9 induces an EP2 signal transduction pathway which appears to be required for progesterone synthesis in cumulus granulosa cells. These studies further demonstrate the importance of oocyte–somatic cell interactions in female reproduction.
Resumo:
Macrophage stimulating protein (MSP), also known as hepatocyte growth factor-like, is a soluble cytokine that belongs to the family of the plasminogen-related growth factors (PRGFs). PRGFs are α/β heterodimers that bind to transmembrane tyrosine kinase receptors. MSP was originally isolated as a chemotactic factor for peritoneal macrophages. Through binding to its receptor, encoded by the RON gene, it stimulates dissociation of epithelia and works as an inflammatory mediator by repressing the production of nitric oxide (NO). Here, we identify a novel role for MSP in the central nervous system. As a paradigm to analyze this function we chose the hypoglossal system of adult mice. We demonstrate in vivo that either administration of exogenous MSP or transplantation of MSP-producing cells at the proximal stump of the resected nerve is sufficient to prevent motoneuron atrophy upon axotomy. We also show that the MSP gene is expressed in the tongue, the target of the hypoglossal nerve, and that MSP induces biosynthesis of Ron receptor in the motoneuron somata. Finally, we show that MSP suppresses NO production in the injured hypoglossal nuclei. Together, these data suggest that MSP is a novel neurotrophic factor for cranial motoneurons and, by regulating the production of NO, may have a role in brain plasticity and regeneration.
Resumo:
The recently cloned, distant member of the transforming growth factor beta (TGF-beta) family, glial cell line-derived neurotrophic factor (GDNF), has potent trophic actions on fetal mesencephalic dopamine neurons. GDNF also has protective and restorative activity on adult mesencephalic dopaminergic neurons and potently protects motoneurons from axotomy-induced cell death. However, evidence for a role for endogenous GDNF as a target-derived trophic factor in adult midbrain dopaminergic circuits requires documentation of specific transport from the sites of synthesis in the target areas to the nerve cell bodies themselves. Here, we demonstrate that GDNF is retrogradely transported by mesencephalic dopamine neurons of the nigrostriatal pathway. The pattern of retrograde transport following intrastriatal injections indicates that there may be subpopulations of neurons that are GDNF responsive. Retrograde axonal transport of biologically active 125I-labeled GDNF was inhibited by an excess of unlabeled GDNF but not by an excess of cytochrome c. Specificity was further documented by demonstrating that another TGF-beta family member, TGF-beta 1, did not appear to affect retrograde transport. Retrograde transport was also demonstrated by immunohistochemistry by using intrastriatal injections of unlabeled GDNF. GDNF immunoreactivity was found specifically in dopamine nerve cell bodies of the substantia nigra pars compacta distributed in granules in the soma and proximal dendrites. Our data implicate a specific receptor-mediated uptake mechanism operating in the adult. Taken together, the present findings suggest that GDNF acts endogenously as a target-derived physiological survival/maintenance factor for dopaminergic neurons.