985 resultados para Nd
Resumo:
Neodymium (Nd) isotopes were measured on 181 samples of fossil fish teeth recovered from Oligocene to Miocene sections at Ocean Drilling Program Site 1090 (3700 m water depth) on Agulhas Ridge in the Atlantic sector of the Southern Ocean. A long-term decreasing trend toward less radiogenic Nd isotope compositions dominates the record. This trend is interrupted by shifts toward more radiogenic compositions near the early/late Oligocene boundary and the Oligocene/Miocene boundary. Overall, epsilon-Nd values at Agulhas Ridge are more radiogenic than at other Atlantic locations, and are similar to those at Indian Ocean locations. The pattern of variability is remarkably similar to Nd isotope results from Walvis Ridge (South Atlantic) and Ninetyeast Ridge (Indian Ocean). In contrast, Agulhas Ridge and Maud Rise Nd isotope records do not show similar patterns over this interval. Results from this study indicate that deep water in the Atlantic flowed predominantly from north to south during the Oligocene and Miocene, and that export of Northern Component Water (NCW) to the Southern Ocean increased in the late Oligocene. There is also evidence for efficient exchange of deep waters between the Atlantic sector of the Southern Ocean and the Indian Ocean, although the direction of deep water flow is not entirely clear from these data. The shifts to more radiogenic Nd isotopic compositions most likely represent increases in the flux of Pacific waters through Drake Passage, and the timing of these events reflect development of a mature Antarctic Circumpolar Current (ACC). The relative timing of increased NCW export and ACC maturation support hypotheses that link deep water formation in the North Atlantic to the opening of Drake Passage.
Resumo:
Nd isotopes preserved in fossil fish teeth and ferromanganese crusts have become a common tool for tracking variations in water mass composition and circulation through time. Studies of Nd isotopes extracted from Pleistocene to Holocene bulk sediments using hydroxylamine hydrochloride (HH) solution yield high resolution records of Nd isotopes that can be interpreted in terms of deep water circulation, but concerns about diagenesis and potential contamination of the seawater signal limit application of this technique to geologically young samples. In this study we demonstrate that Nd extracted from the > 63 µm, decarbonated fraction of older Ocean Drilling Program (ODP) sediments using a 0.02 M HH solution produces Nd isotopic ratios that are within error of values from cleaned fossil fish teeth collected from the same samples, indicating that the HH-extractions are robust recorders of deep sea Nd isotopes. This excellent correlation was achieved for 94 paired fish teeth and HH-extraction samples ranging in age from the Miocene to Cretaceous, distributed throughout the north, tropical and south Atlantic, and composed of a range of lithologies including carbonate-rich oozes/chalks and black shales. The strong Nd signal recovered from Cretaceous anoxic black shale sequences is unlikely to be associated with ferromanganese oxide coatings, but may be derived from abundant phosphatic fish teeth and debris or organic matter in these samples. In contrast to the deep water Nd isotopic signal, Sr isotopes from HH-extractions are often offset from seawater values, suggesting that evaluation of Sr isotopes is a conservative test for the integrity of Nd isotopes in the HH fraction. However, rare earth elements (REE) from the HH-extractions and fish teeth produce distinctive middle REE bulge patterns that may prove useful for evaluating whether the Nd isotopic signal represents uncontaminated seawater. Alternatively, a few paired HH-extraction and cleaned fish teeth samples from each site of interest can be used to verify the seawater composition of the HH-extractions. The similarity between isotopic values for the HH-extraction and fish teeth illustrates that the extensive cleaning protocol applied to fish teeth samples is not necessary in typical, carbonate-rich, deep sea sediments.
Resumo:
Sm-Nd concentrations and Nd isotopes were investigated in the fine fraction of two Labrador Sea cores to reconstruct the deep circulation patterns through changes in sedimentary supply since the last glacial stage. Three sources are involved: the North American Shield, Palaeozoic rocks from northeastern Greenland, and mid-Atlantic volcanism. The variable input of these sources provides constraints on the relative sedimentary supply, in conjunction with inception of deep currents. During the last glacial stage a persistent but sluggish current occurred inside the Labrador Basin. An increasing discharge of volcanic material driven by the North East Atlantic Deep Water is documented since 14.3 kyr, signaling the setup of a modern-like deep circulation pattern throughout the Labrador, Irminger, and Iceland basins. During the last deglacial stage the isotopic record was punctually influenced by erosion processes related mainly to ice-sheet instabilities, especially 11.4, 10.2, and 9.2 kyr ago.
Resumo:
We present new Nd isotope records from Walvis Ridge Ocean Drilling Program (ODP) sites 1262-1264 (southeastern Atlantic) spanning the past 24 Ma to investigate the Neogene evolution of Atlantic thermohaline circulation. The new data indicate that deepwater epsilon-Nd(t) values from ODP Site 1262 decrease from -11.0 at 10.6 Ma to -12.5 by 7.3 Ma. This decrease parallels the Nd isotope trends contained in Fe-Mn crust records from the northwestern Atlantic; however, the shift at ODP Site 1262 (4755 m water depth) occurred up to ~6 Ma earlier than the corresponding changes in crust records from the Atlantic and earlier than any Atlantic site shallower than 2700 m paleowater depth. Recent interpretations of the rapid decrease in Fe-Mn crust Nd epsilon-Nd(t)ss values invoke changes in weathering inputs to the Labrador Sea region rather than a fundamental change in deepwater convection in the Labrador Sea. However, the new evidence for significant depth stratification of the Nd isotope signal in the southeastern Atlantic between 10.6 and 7.3 Ma suggests that the onset of deepwater convection in the Labrador Sea may have played a role in the deepwater decrease in Nd isotopic composition. Climatic conditions during the middle to late Miocene likely favored an increase in the importance of glacially induced mechanical weathering, while at the same time promoting deep convection in the Labrador Sea.
Resumo:
Planktic foraminifera have been used as recorders of the neodymium (Nd) isotopic composition of seawater, although there is still controversy over the precise provenance of the Nd signal. We present an extensive, multispecific plankton tow Nd/Ca data set from several geographic locations (SE Atlantic, NE Atlantic, Norwegian Sea, and western Mediterranean), together with core top samples from the Mediterranean region. The range of Nd/Ca ratios in plankton-towed foraminifera, cleaned only of organic material, from all regions (0.01-0.7 µmol/mol), is similar to previously published analyses of sedimentary foraminifera cleaned using both oxidative and reductive steps, with distribution coefficients (Kd) ranging between 4 and 302. For the Mediterranean, where core top and plankton tow data are both available, the range for plankton tows (0.05-0.7 µmol/mol) is essentially identical to that for the core tops (0.1-0.5 µmol/mol). Readsorption of Nd during cleaning is ruled out by the fact that the plankton tow samples underwent only an oxidative cleaning process. We find a relationship between manganese (Mn) and Nd in plankton tow samples that is mirrored by a similar correlation in core top samples. This relationship suggests that Fe-Mn coatings are of negligible importance to the Nd budgets of foraminifera as the Nd/Mn ratio it implies is over an order of magnitude greater than that seen in other Fe-Mn oxide phases. Rather, since both plankton tows and core tops present a similar behavior, the Nd/Mn relationship must originate in the upper water column. The data are consistent with the acquisition of Nd and Mn from the water column by binding to organic material and the fact that intratest organic material is shielded from both aggressive cleaning and diagenetic processes. Collectively, the results help to explain two abiding puzzles about Nd in sedimentary planktic foraminifera: their high REE contents and the fact that they record a surface water Nd isotopic signal, regardless of the cleaning procedure used.
Resumo:
The DSDP/ODP Hole 504B, drilled in the 5.9 Ma southern flank of the Costa Rica Rift, represents the deepest section through modern ocean floor basaltic basement. The hole penetrates a 570 m thick volcanic zone, a 210 m thick transition zone of volcanic rocks and dykes, and 1056 m of dykes. A representative selection of these basalt types has been investigated with respect to Nd and Pb isotopes. The epsilonNd of the basalts varies from 7.62 to 11.16. This range in the Nd-isotope composition represents about 67% of the total range reported for Pacific MORB. The Pb-isotope composition also shows significant variation, with 206Pb/204Pb varying from 17.90 to 18.82. The isotopic data show that a small volume of enriched mantle existed in the source. The large ranges in isotopic composition in a single drill hole demonstrate the importance of small-scale mantle heterogeneities in the petrogenesis of MORB. Fractional melting and extraction of small magma batches by channelled flow, and small, short-lived crustal magma reservoirs, with limited potential for mixing of the mantle derived magmas, are favored by these isotopic data.
Resumo:
143Nd/144Nd ratios have been determined on 37 samples of oceanic basalt, with a typical precision of +/- 2-3 * 10**-5 (2 sigma). Ocean island and dredged and cored submarine basalts are included for which reliable measurements of 87Sr/86Sr ratios exist in the literature or have been measured as part of this study. A strong negative correlation exists between 143Nd/144Nd and 87Sr/86Sr ratios in basalts from Iceland and the Reykjanes Ridge, but such a clear correlation does not exist for samples from the Hawaiian Islands. However, when other ocean island basalts from the Atlantic are included there is an overall correlation between these two parameters. Increases and decreases in Rb/Sr in oceanic basalt source regions have in general been accompanied by decreases and increases respectively in Sm/Nd ratios. The compatibility of the data with single-stage models is assessed and it is concluded that enrichment and depletion events, which are consistent with transfer of silicate melts, are responsible for the observed variation.
Resumo:
Pelagic clay of the east-central Pacific province is shown to be a mixture of three primary detrital components, reflecting continental source areas in Asia, North America, and Central and South America. Relative contributions from each source area are a function of geography, and this distribution appears to have remained constant over the past five million years, despite changing flux rates. A Q-mode factor analysis of downcore records for Pb, Sr, and Nd isotopes identified three factors that account for 98% of the total variance. These factors represent the radiogenic isotopic signatures of 1) late Cenozoic Asian dust, which dominates in the central North Pacific; 2) North American continental hemipelagic/eolian sources, restricted mainly to the easternmost North Pacific at ~30 °N latitude; and 3) Central and South American sources, restricted to areas east of ~100 °W longitude. South of the Intertropical Convergence Zone (~6 °N), the Asian dust signature diminishes abruptly. We conclude that late Cenozoic Asian dust sources can be isotopically differentiated downcore from both North American and South and Central American sources in the eastcentral Pacific. This approach has a utility for identifying changes in long-term Cenozoic atmospheric circulation patterns.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)