955 resultados para NON-LINEAR MODELS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Limited literature regarding parameter estimation of dynamic systems has been identified as the central-most reason for not having parametric bounds in chaotic time series. However, literature suggests that a chaotic system displays a sensitive dependence on initial conditions, and our study reveals that the behavior of chaotic system: is also sensitive to changes in parameter values. Therefore, parameter estimation technique could make it possible to establish parametric bounds on a nonlinear dynamic system underlying a given time series, which in turn can improve predictability. By extracting the relationship between parametric bounds and predictability, we implemented chaos-based models for improving prediction in time series. ^ This study describes work done to establish bounds on a set of unknown parameters. Our research results reveal that by establishing parametric bounds, it is possible to improve the predictability of any time series, although the dynamics or the mathematical model of that series is not known apriori. In our attempt to improve the predictability of various time series, we have established the bounds for a set of unknown parameters. These are: (i) the embedding dimension to unfold a set of observation in the phase space, (ii) the time delay to use for a series, (iii) the number of neighborhood points to use for avoiding detection of false neighborhood and, (iv) the local polynomial to build numerical interpolation functions from one region to another. Using these bounds, we are able to get better predictability in chaotic time series than previously reported. In addition, the developments of this dissertation can establish a theoretical framework to investigate predictability in time series from the system-dynamics point of view. ^ In closing, our procedure significantly reduces the computer resource usage, as the search method is refined and efficient. Finally, the uniqueness of our method lies in its ability to extract chaotic dynamics inherent in non-linear time series by observing its values. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies reveal that in recent decades a decrease in sleep duration has occurred. Social commitments, such as work and school are often not aligned to the "biological time" of individuals. Added to this, there is a reduced force of zeitgeber caused by less exposure to daylight and larger exposure to evenings. This causes a chronic sleep debt that is offset in a free days. Indeed, a restriction and extent of sleep called "social Jet lag" occurs weekly. Sleep deprivation has been associated to obesity, cancer, and cardiovascular risk. It is suggested that the autonomic nervous system is a pathway that connects sleep problems to cardiovascular diseases. However, beyond the evidence demonstrated by studies using models of acute and controlled sleep deprivation, studies are needed to investigate the effects of chronic sleep deprivation as it occurs in the social jet lag. The aim of this study was to investigate the influence of social jet lag in circadian rest-activity markers and heart function in medical students. It is a cross-sectional, observational study conducted in the Laboratory of Neurobiology and Biological Rhythmicity (LNRB) at the Department of Physiology UFRN. Participated in the survey medical students enrolled in the 1st semester of their course at UFRN. Instruments for data collection: Munich Chronotype Questionnaire, Morningness Eveningness Questionnaire of Horne and Östberg, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, Actimeter; Heart rate monitor. Analysed were descriptive variables of sleep, nonparametric (IV60, IS60, L5 and M10) and cardiac indexes of time domain, frequency (LF, HF LF / HF) and nonlinear (SD1, SD2, SD1 / SD2). Descriptive, comparative and correlative statistical analysis was performed with SPSS software version 20. 41 students participated in the study, 48.8% (20) females and 51.2% (21) males, 19.63 ± 2.07 years. The social jet lag had an average of 02: 39h ± 00:55h, 82.9% (34) with social jet lag ≥ 1h and there was a negative correlation with the Munich chronotype score indicating greater sleep deprivation in subjects prone to eveningness. Poor sleep quality was detected in 90.2% (37) (X2 = 26.56, p <0.001) and 56.1% (23) excessive daytime sleepiness (X2 = 0.61, p = 0.435). Significant differences were observed in the values of LFnu, HFnu and LF / HF between the groups of social jet lag <2h and ≥ 2h and correlation of the social jet lag with LFnu (rs = 0.354, p = 0.023), HFnu (rs = - 0.354 , p = 0.023) and LF / HF (r = 0.355, p = 0.023). There was also a negative association between IV60 and indexes in the time domain and non-linear. It is suggested that chronic sleep deprivation may be associated with increased sympathetic activation promoting greater cardiovascular risk.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study offers an analytical approach in order to provide a determination of the temperature field developed during the DC TIG welding of a thin plate of aluminum. The non-linear characteristics of the phenomenon, such as the dependence of the thermophysical and mechanical properties with temperature were considered in this study. In addition to the conductive heat exchange process, were taken into account the exchange by natural convection and radiation. A transient analysis is performed in order to obtain the temperature field as a function of time. It is also discussed a three-dimensional modeling of the heat source. The results obtained from the analytical model were be compared with the experimental ones and those available in the literature. The analytical results show a good correlation with the experimental ones available in the literature, thus proving the feasibility and efficiency of the analytical method for the simulation of the heat cycle for this welding process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research focuses on developing active suspension optimal controllers for two linear and non-linear half-car models. A detailed comparison between quarter-car and half-car active suspension approaches is provided for improving two important scenarios in vehicle dynamics, i.e. ride quality and road holding. Having used a half-car vehicle model, heave and pitch motion are analyzed for those scenarios, with cargo mass as a variable. The governing equations of the system are analysed in a multi-energy domain package, i.e., 20-Sim. System equations are presented in the bond-graph language to facilitate calculation of energy usage. The results present optimum set of gains for both ride quality and road holding scenarios are the gains which has derived when maximum allowable cargo mass is considered for the vehicle. The energy implications of substituting passive suspension units with active ones are studied by considering not only the energy used by the actuator, but also the reduction in energy lost through the passive damper. Energy analysis showed less energy was dissipated in shock absorbers when either quarter-car or half-car controllers were used instead of passive suspension. It was seen that more energy could be saved by using half-car active controllers than the quarter-car ones. Results also proved that using active suspension units, whether quarter-car or half-car based, under those realistic limitations is energy-efficient and suggested.