986 resultados para NMDA glutamate receptors
Resumo:
In the present study dopamine was measured in the hypothalamus, brainstem, pancreatic islets and plasma, using HPLC. Dopamine D2 receptor changes in the hypothalamus, brainstem and pancreatic islets were studied using [3H] YM-09151-2 in streptozotocin-induced diabetic and insulintreated diabetic rats. There was a significant decrease in dopatnine content in the hypothalamus (P<0.001), brainstem (P<0.001), pancreatic islets (P<0.001) and plasma (P<0.00I) in diabetic rats when compared to control. Scatchard analysis of [3H] YM-09151-2 in the hypothalamus of diabetic rats showed a significant decrease in Bax (P<0.001) and Kd, showing an increased affinity of D2 receptors when compared to control. Insulin treatment did not completely reverse the changes that occurred during diabetes. There was a significant decrease in B,nax (P<0.01) with decreased affinity in the brainstem of diabetic rats. The islet membrane preparation of diabetic rats showed a significant decrease (P<0.001) in the binding of [3H] YM-09 151-2 with decreased Kd (P<0.001) compared to control. The increase in affinity of D2 receptors in hypothalamus and pancreatic islets and the decreased affinity in brainstem were confirmed by competition analysis. Thus our results suggest that the decreased dopamine D, receptor function in the hypothalamus, brainstem and pancreas affects insulin secretion in diabetic rats, which has immense clinical relevance to the management of diabetes.
Resumo:
Kinetic parameters of brain glutamate dehydrogenase (GDH) were compared in the brain stem, cerebellum and cerebral cortex of three weeks and one year old streptozotocin (STZ) induced four day diabetic rats with respective controls. A single intrafemoral dose of STZ (60mg/Kg body weight) was administered to induce diabetes in both age groups. After four days the blood glucose levels showed a significant increase in the diabetic animals of both age groups compared with the respective controls. The increase in blood glucose was significant in one year old compared to the three weeks old diabetic rats. The Vmm of the enzyme was decreased in all the brain regions studied, of the three weeks old diabetic rats without any significant change in the Km. In the adult the Vmax of GDH was increased in cerebellum and brain stem but was unchanged in the cerebral cortex. The K. was unchanged in cerebellum and cerebral cortex but was increased in the brain stem. These results suggest there may be an important regulatory role of the glutamate pathway in brain neural network disturbances and neuronal degeneration in diabetes as a function of age.
Resumo:
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-l-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (K) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.
Resumo:
The stimulatory effect of dopamine through dopamine 1)2 receptor on glucose - induced insulin secretion was studied in the pancreatic islets in nitro. I)oparnilie signifieanlly stimula(ed insulin secretion at a concentration of 10 a N1 in the presence of high,glucose ( 20 nii1 ). ' fhe higher concentrations of dopamine (111 -1() 4) inhibited glucose- induced insulin secretion in the presence of both 4 mM1 and 20 m M glucose. Stimulatory and inhibitory effect of dopamine on glucose - induced insulin secretion was reverted by the addition of dopamine 1)2 receptor antagonists such as butaclamol and sulpiride . Norepinephrine (NE) at 111 4 11 concentration inhibited the dopamine uptake as well as its stimulatory effect at 11) - 8 IN1 concentration on glucose induced insulin secretion. Our results suggest that dopamine exerts a differential effect on glucose -induced insulin secretion through dopamine D2 receptor and it is essential for the regulation of glucose-induced insulin secretion by pancreatic islets.
Resumo:
The high-affinity bindings of [3H]-5-hydroxytryptamine to serotonin S-1 receptors, [3H]-ketanserin to serotonin S-2 receptors in the cerebral cortex, [3H]- fluphenazine to dopamine D-1 receptors, and [3H]-spiroperidol to dopamine D-2 receptors in the corpus striatum were studied in pyridoxine-deficient rats and compared to pyridoxine-supplemented controls. There was a significant increase in the maximal binding (Bmax) of serotonin S-1 and S-2 receptors with a significant decrease in their binding affinities (Kd). However, there were no significant changes either in the maximal binding or binding affinity of striatal dopamine D- 1 and D-2 receptors. Receptor sensitivity seems to correlate negatively with the corresponding neurotransmitter concentrations in the pyridoxine-deficient rats.
Resumo:
The recent developments in neurobiology have rendered new prominence and potential to study about the structure and function of brain and related disorders. Human behaviour is the net result of neural control of the communication between brain cells. Neurotransmitters are chemicals that are used to relay, amplify and modulate electrical signals between neurons and/or another cell. It mediates rapid intercellular communication through the nervous system by interacting with cell surface receptors. These receptors often trigger second messenger signaling pathways that regulate the activity of ion channels. The functional balance of different neurotransmitters such as Acetylcholine (Ach), Dopamine (DA), Serotonin (5-HT), Norepinephrine (NE), Epinephrine (EPI), Glutamate and Gamma amino butyric acid (GABA) regulates the growth, division and other vital functions of a normal cell / organism (Sudha, 1998). Any change in neurotransmitters' functional balance will result in the failure of cell function and may lead to the occurrence of diseases. Abnormalities in the production or functioning of neurotransmitters have been implicated in a number of neurological disorders like Schizophrenia, Alzheimer's, Epilepsy, Depression and Parkinson's disease. Changes in central and peripheral neuronal signaling system is also noted in diabetes, cancer, cell proliferation, alcoholism and aging. Elucidation of neurotransmitters receptor interaction pathways and gene expression regulation by second messengers and transcriptional factors in health and disease conditions can lead to new small molecules for development of therapeutic agents to improve neurological disease conditions. Increased awareness of the global effects of neurological disorders should help health care planners and the neurological community set appropriate priorities in research, prevention, and management of these diseases.
Age-related and sex-related alterations in f3-adrenergic receptors in different regions of rat brain
Resumo:
The binding of (-)[ 3H ]dihydroalprenolol , an antagonist of norepinephrine , to $-adrenergic receptors in different regions of the brain of male and female rats of various ages was measured . The binding to the synaptosomal fraction of corpus striatum , hypothalamus, cerebral cortex, cerebellum and the brainstems shows a significant decrease in the binding in old rats of both sexes . Only in the female corpus striatal region, the binding in the adult and the old is the same . In the case of females, the highest binding is seen in the young. In the male, an increase in binding occurs up to adulthood , after which it declines, suggesting a definite sex-related difference in the Q-adrenergic receptor.
Resumo:
Epilepsy is a syndrome of episodic brain dysfunction characterized by recurrent unpredictable, spontaneous seizures. Cerebellar dysfunction is a recognized complication of temporal lobe epilepsy and it is associated with seizure generation, motor deficits and memory impairment. Serotonin is known to exert a modulatory action on cerebellar function through 5HT2C receptors. 5-HT2C receptors are novel targets for developing anticonvulsant drugs. In the present study, we investigated the changes in the 5-HT2C receptors binding and gene expression in the cerebellum of control, epileptic and Bacopa monnieri treated epileptic rats. There was a significant down regulation of the 5-HT content (pb0.001), 5-HT2C gene expression (pb0.001) and 5-HT2C receptor binding (pb0.001) with an increased affinity (pb0.001). Carbamazepine and B. monnieri treatments to epileptic rats reversed the down regulated 5-HT content (pb0.01), 5-HT2C receptor binding (pb0.001) and gene expression (pb0.01) to near control level. Also, the Rotarod test confirms the motor dysfunction and recovery by B. monnieri treatment. These data suggest the neuroprotective role of B. monnieri through the upregulation of 5-HT2C receptor in epileptic rats. This has clinical significance in the management of epilepsy
Resumo:
Hypoxia in neonates can lead to biochemical and molecular alterations mediated through changes in neurotransmitters resulting in permanent damage to brain. In this study, we evaluated the changes in the receptor status of GABAA in the cerebral cortex and brainstem of hypoxic neonatal rats and hypoxic rats supplemented with glucose and oxygen using binding assays and gene expression of GABAAa1 and GABAAc5. In the cerebral cortex and brainstem of hypoxic neonatal rats, a significant decrease in GABAA receptors was observed, which accounts for the respiratory inhibition. Hypoxic rats sup- plemented with glucose alone and with glucose and oxygen showed, respectively, a reversal of the GABAA receptors, andGABAAa1 and GABAAc5 gene expression to control. Glucose acts as an immediate energy source thereby reducing the ATP-depletion-induced increase in GABA and oxygenation, which helps in encountering anoxia. Resuscitation with oxygen alone was less effective in reversing the receptor alterations. Thus, the results of this study suggest that reduction in the GABAA receptors functional regulation during hypoxia plays an important role in mediating the brain damage. Glucose alone and glucose and oxygen supplementation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.
Resumo:
Department of Biotechnology, Cochin University of Science and Technology
Resumo:
The present study was designed to investigate the protective effect of glucose, oxygen and epinephrine resuscitation on impairment in the functional role of GABAergic, serotonergic, muscarinic receptors, PLC, BAX, SOD, CAT and GPx expression in the brain regions of hypoxia induced neonatal rats. Also, the role of hormones - Triiodothyronine (T3) and insulin, second messengers – cAMP, cGMP and IP3 and transcription factors – HIF and CREB in the regulation of neonatal hypoxia and its resuscitation methods were studied. Behavioural studies were conducted to evaluate the motor function and cognitive deficit in one month old control and experimental rats. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The sequence of glucose, epinephrine and oxygen administration at the molecular level is an important aspect of the study. The additive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures by initial supply of glucose to hypoxic neonatal rats showed from the molecular study when brought to practice will lead to healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.
Resumo:
Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).
Resumo:
I) To study the changes in the content of brain rrrorroamirres in streptozotocirr-irrduced tliabetes as a lirnction of age and to lirrd the role oliadrenal lrornroncs in diabetic state. 2) To assess the adrenergic receptor function in the brain stem ofstreptozotocin-induced diabetic rats ofdillerent ages. 3) To study the changes in the basal levels of second messenger cAMP in the brain stenr ofstreptozotocin-induced diabetic rats as a function of age. 4) To study the changes occurring in the content ofmorroamines and their metabolites in whole pancreas and isolated pancreatic islets of streptozotocin-diabetic rats as a function ofage and the effect of adrenal hormones. 5) To study the adrenergic receptors and basal levels of cAMP in isolated pancreatic islets in young and old streptozotoein-diabetic rats. 6) The in virro study of CAMP content in pancreatic islets of young and old rats and its ellect on glucose induced insulin secretion. 7) 'lhe in vitro study on the involvement of dopamine and corticosteroids in glucose induced insulin secretion in pancreatic islets as a function of age.