982 resultados para NEUROBIOLOGICAL MECHANISMS
Resumo:
Objectives To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. Results A maximum power output of 114 ± 6 mWm−2 was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm−2. The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. Conclusion S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
Resumo:
This synopsis summarizes the key chemical and bacteriological characteristics of β-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum β-lactamases and AmpC β-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump β-lactams out of the bacterial cell.
Resumo:
This synopsis summarizes the key chemical and bacteriological characteristics of β-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This reviewalso summarizes the main resistancemechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum β-lactamases and AmpC β-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump β-lactams out of the bacterial cell.
Resumo:
In this paper we address the real-time capabilities of P-NET, which is a multi-master fieldbus standard based on a virtual token passing scheme. We show how P-NET’s medium access control (MAC) protocol is able to guarantee a bounded access time to message requests. We then propose a model for implementing fixed prioritybased dispatching mechanisms at each master’s application level. In this way, we diminish the impact of the first-come-first-served (FCFS) policy that P-NET uses at the data link layer. The proposed model rises several issues well known within the real-time systems community: message release jitter; pre-run-time schedulability analysis in non pre-emptive contexts; non-independence of tasks at the application level. We identify these issues in the proposed model and show how results available for priority-based task dispatching can be adapted to encompass priority-based message dispatching in P-NET networks.
Resumo:
Abstract The emergence of multi and extensively drug resistant tuberculosis (MDRTB and XDRTB) has increased the concern of public health authorities around the world. The World Health Organization has defined MDRTB as tuberculosis (TB) caused by organisms resistant to at least isoniazid and rifampicin, the main first-line drugs used in TB therapy, whereas XDRTB refers to TB resistant not only to isoniazid and rifampicin, but also to a fluoroquinolone and to at least one of the three injectable second-line drugs, kanamycin, amikacin and capreomycin. Resistance in Mycobacterium tuberculosis is mainly due to the occurrence of spontaneous mutations and followed by selection of mutants by subsequent treatment. However, some resistant clinical isolates do not present mutations in any genes associated with resistance to a given antibiotic, which suggests that other mechanism(s) are involved in the development of drug resistance, namely the presence of efflux pump systems that extrude the drug to the exterior of the cell, preventing access to its target. Increased efflux activity can occur in response to prolonged exposure to subinhibitory concentrations of anti-TB drugs, a situation that may result from inadequate TB therapy. The inhibition of efflux activity with a non-antibiotic inhibitor may restore activity of an antibiotic subject to efflux and thus provide a way to enhance the activity of current anti-TB drugs. The work described in this thesis foccus on the study of efflux mechanisms in the development of multidrug resistance in M. tuberculosis and how phenotypic resistance, mediated by efflux pumps, correlates with genetic resistance. In order to accomplish this goal, several experimental protocols were developed using biological models such as Escherichia coli, the fast growing mycobacteria Mycobacterium smegmatis, and Mycobacterium avium, before their application to M. tuberculosis. This approach allowed the study of the mechanisms that result in the physiological adaptation of E. coli to subinhibitory concentrations of tetracycline (Chapter II), the development of a fluorometric method that allows the detection and quantification of efflux of ethidium bromide (Chapter III), the characterization of the ethidium bromide transport in M. smegmatis (Chapter IV) and the contribution of efflux activity to macrolide resistance in Mycobacterium avium complex (Chapter V). Finally, the methods developed allowed the study of the role of efflux pumps in M. tuberculosis strains induced to isoniazid resistance (Chapter VI). By this manner, in Chapter II it was possible to observe that the physiological adaptation of E. coli to tetracycline results from an interplay between events at the genetic level and protein folding that decrease permeability of the cell envelope and increase efflux pump activity. Furthermore, Chapter III describes the development of a semi-automated fluorometric method that allowed the correlation of this efflux activity with the transport kinetics of ethidium bromide (a known efflux pump substrate) in E. coli and the identification of efflux inhibitors. Concerning M. smegmatis, we have compared the wild-type M. smegmatis mc2155 with knockout mutants for LfrA and MspA for their ability to transport ethidium bromide. The results presented in Chapter IV showed that MspA, the major porin in M. smegmatis, plays an important role in the entrance of ethidium bromide and antibiotics into the cell and that efflux via the LfrA pump is involved in low-level resistance to these compounds in M. smegmatis. Chapter V describes the study of the contribution of efflux pumps to macrolide resistance in clinical M. avium complex isolates. It was demonstrated that resistance to clarithromycin was significantly reduced in the presence of efflux inhibitors such as thioridazine, chlorpromazine and verapamil. These same inhibitors decreased efflux of ethidium bromide and increased the retention of [14C]-erythromycin in these isolates. Finaly, the methods developed with the experimental models mentioned above allowed the study of the role of efflux pumps on M. tuberculosis strains induced to isoniazid resistance. This is described in Chapter VI of this Thesis, where it is demonstrated that induced resistance to isoniazid does not involve mutations in any of the genes known to be associated with isoniazid resistance, but an efflux system that is sensitive to efflux inhibitors. These inhibitors decreased the efflux of ethidium bromide and also reduced the minimum inhibitory concentration of isoniazid in these strains. Moreover, expression analysis showed overexpression of genes that code for efflux pumps in the induced strains relatively to the non-induced parental strains. In conclusion, the work described in this thesis demonstrates that efflux pumps play an important role in the development of drug resistance, namely in mycobacteria. A strategy to overcome efflux-mediated resistance may consist on the use of compounds that inhibit efflux activity, restoring the activity of antimicrobials that are efflux pump substrates, a useful approach particularly in TB where the most effective treatment regimens are becoming uneffective due to the increase of MDRTB/XDRTB.
Resumo:
Cognitive deficits are observed in a variety of domains in patients with bipolar disorder (BD). These deficits are attributed to neurobiological, functional and structural brain factors, particularly in prefrontal cortex. Furthermore, cortical alterations in each phase (mania/hypomania, euthymia and depression) are also present. A growing basis of evidence supports aerobic exercise as an alternative treatment method for BD symptoms. Its benefits for physical health in healthy subjects and some psychiatric disorders are fairly established; however evidence directly addressed to BD is scant. Lack of methodological consistency, mainly related to exercise, makes it difficult accuracy and extrapolation of the results. Nevertheless, mechanisms related to BD physiopathology, such as hormonal and neurotransmitters alterations and mainly related to brain-derived neurotrophic factors (BDNF) can be explored. BDNF, specially, have a large influence on brain ability and its gene expression is highly responsive to aerobic exercise. Moreover, aerobic exercise trough BDNF may induce chronic stress suppression, commonly observed in patients with BD, and reduce deleterious effects caused by allostatic loads. Therefore, it is prudent to propose that aerobic exercise plays an important role in BD physiopathological mechanisms and it is a new way for the treatment for this and others psychiatric disorders.
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Medicine
Resumo:
Dissertação para a obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Doctoral dissertation for Ph.D. degree in Sustainable Chemistry
Resumo:
Organisms produce correctly patterned structures across a wide range of organ and body sizes. Despite considerable work revealing the mechanisms that regulate the growth and patterning of organs, those responsible for coordinating organ development with whole-body development are still largely unknown.(...)
Resumo:
The emergence of new fungal pathogens, either of plants or animals, and the increasing number of reported cases of resistant human pathogenic strains to the available antifungal drugs reinforces the need for better understanding the biology of filamentous fungi. Conventional drugs target components of the fungal membrane or cell wall, therefore identifying novel intracellular targets, yet unique to fungi, is a global priority.(...)
Resumo:
The role of ecological constraints in promoting sociality is currently much debated. Using a direct-fitness approach, we show this role to depend on the kin-discrimination mechanisms underlying social interactions. Altruism cannot evolve under spatially based discrimination, unless ecological constraints prevent complete dispersal. Increasing constraints enhances both the proportion of philopatric (and thereby altruistic) individuals and the level of altruistic investments conceded in pairwise interactions. Familiarity-based discrimination, by contrast, allows philopatry and altruism to evolve at significant levels even in the absence of ecological constraints. Increasing constraints further enhances the proportion of philopatric (and thereby altruistic) individuals but not the level of altruism conceded. Ecological constraints are thus more likely to affect social evolution in species in which restricted cognitive abilities, large group size, and/or limited period of associative learning force investments to be made on the basis of spatial cues.
Resumo:
An acute attack of gout is a paradigm of acute sterile inflammation, as opposed to pyogenic inflammation. Recent studies suggest that the triggering of IL-1beta release from leucocytes lies at the heart of a cascade of processes that involves multiple cytokines and mediators. The NLRP3 inflammasome appears to have a specific role in this regard, but the biochemical events leading to its activation are still not well understood. We review the known mechanisms that underlie the inflammatory process triggered by urate crystals and suggest areas that require further research.