965 resultados para Myocardial perfusion
Resumo:
BACKGROUND: Mortality and morbidity from acute myocardial infarction (AMI) remain high. Intravenous magnesium started early after the onset of AMI is thought to be a promising adjuvant treatment. Conflicting results from earlier trials and meta-analyses warrant a systematic review of available evidence. OBJECTIVES: To examine the effect of intravenous magnesium versus placebo on early mortality and morbidity. SEARCH STRATEGY: We searched CENTRAL (The Cochrane Library Issue 3, 2006), MEDLINE (January 1966 to June 2006) and EMBASE (January 1980 to June 2006), and the Chinese Biomedical Disk (CBM disk) (January 1978 to June 2006). Some core Chinese medical journals relevant to the cardiovascular field were hand searched from their starting date to the first-half year of 2006. SELECTION CRITERIA: All randomized controlled trials that compared intravenous magnesium with placebo in the presence or absence of fibrinolytic therapy in addition to routine treatment were eligible if they reported mortality and morbidity within 35 days of AMI onset. DATA COLLECTION AND ANALYSIS: Two reviewers independently assessed the trial quality and extracted data using a standard form. Odds ratio (OR) were used to pool the effect if appropriate. Where heterogeneity of effects was found, clinical and methodological sources of this were explored. MAIN RESULTS: For early mortality where there was evidence of heterogeneity, a fixed-effect meta-analysis showed no difference between magnesium and placebo groups (OR 0.99, 95%CI 0.94 to 1.04), while a random-effects meta-analysis showed a significant reduction comparing magnesium with placebo (OR 0.66, 95% CI 0.53 to 0.82). Stratification by timing of treatment (< 6 hrs, 6+ hrs) reduced heterogeneity, and in both fixed-effect and random-effects models no significant effect of magnesium was found. In stratified analyses, early mortality was reduced for patients not treated with thrombolysis (OR=0.73, 95% CI 0.56 to 0.94 by random-effects model) and for those treated with less than 75 mmol of magnesium (OR=0.59, 95% CI 0.49 to 0.70) in the magnesium compared with placebo groups.Meta-analysis for the secondary outcomes where there was no evidence of heterogeneity showed reductions in the odds of ventricular fibrillation (OR=0.88, 95% CI 0.81 to 0.96), but increases in the odds of profound hypotension (OR=1.13, 95% CI 1.09 to 1.19) and bradycardia (OR=1.49, 95% CI 1.26 to 1.77) comparing magnesium with placebo. No difference was observed for heart block (OR=1.05, 95% CI 0.97-1.14). For those outcomes where there was evidence of heterogeneity, meta-analysis with both fixed-effect and random-effects models showed that magnesium could decrease ventricular tachycardia (OR=0.45, 95% CI 0.31 to 0.66 by fixed-effect model; OR=0.40, 95% CI 0.19 to 0.84 by random-effects model) and severe arrhythmia needing treatment or Lown 2-5 (OR=0.72, 95% CI 0.60 to 0.85 by fixed-effect model; OR=0.51, 95% CI 0.33 to 0.79 by random-effects model) compared with placebo. There was no difference on the effect of cardiogenic shock between the two groups. AUTHORS' CONCLUSIONS: Owing to the likelihood of publication bias and marked heterogeneity of treatment effects, it is essential that the findings are interpreted cautiously. From the evidence reviewed here, we consider that: (1) it is unlikely that magnesium is beneficial in reducing mortality both in patients treated early and in patients treated late, and in patients already receiving thrombolytic therapy; (2) it is unlikely that magnesium will reduce mortality when used at high dose (>=75 mmol); (3) magnesium treatment may reduce the incidence of ventricular fibrillation, ventricular tachycardia, severe arrhythmia needing treatment or Lown 2-5, but it may increase the incidence of profound hypotension, bradycardia and flushing; and (4) the areas of uncertainty regarding the effect of magnesium on mortality remain the effect of low dose treatment (< 75 mmol) and in patients not treate...
Resumo:
CONTEXT: The effect of a percutaneous coronary intervention (PCI) on the long-term prognosis of patients with silent ischemia after a myocardial infarction (MI) is not known. OBJECTIVE: To determine whether PCI compared with drug therapy improves long-term outcome of asymptomatic patients with silent ischemia after an MI. DESIGN, SETTING, AND PARTICIPANTS: Randomized, unblinded, controlled trial (Swiss Interventional Study on Silent Ischemia Type II [SWISSI II]) conducted from May 2, 1991, to February 25, 1997, at 3 public hospitals in Switzerland of 201 patients with a recent MI, silent myocardial ischemia verified by stress imaging, and 1- or 2-vessel coronary artery disease. Follow-up ended on May 23, 2006. INTERVENTIONS: Percutaneous coronary intervention aimed at full revascularization (n = 96) or intensive anti-ischemic drug therapy (n = 105). All patients received 100 mg/d of aspirin and a statin. MAIN OUTCOME MEASURES: Survival free of major adverse cardiac events defined as cardiac death, nonfatal MI, and/or symptom-driven revascularization. Secondary measures included exercise-induced ischemia and resting left ventricular ejection fraction during follow-up. RESULTS: During a mean (SD) follow-up of 10.2 (2.6) years, 27 major adverse cardiac events occurred in the PCI group and 67 events occurred in the anti-ischemic drug therapy group (adjusted hazard ratio, 0.33; 95% confidence interval, 0.20-0.55; P<.001), which corresponds to an absolute event reduction of 6.3% per year (95% confidence interval, 3.7%-8.9%; P<.001). Patients in the PCI group had lower rates of ischemia (11.6% vs 28.9% in patients in the drug therapy group at final follow-up; P = .03) despite fewer drugs. Left ventricular ejection fraction remained preserved in PCI patients (mean [SD] of 53.9% [9.9%] at baseline to 55.6% [8.1%] at final follow-up) and decreased significantly (P<.001) in drug therapy patients (mean [SD] of 59.7% [11.8%] at baseline to 48.8% [7.9%] at final follow-up). CONCLUSION: Among patients with recent MI, silent myocardial ischemia verified by stress imaging, and 1- or 2-vessel coronary artery disease, PCI compared with anti-ischemic drug therapy reduced the long-term risk of major cardiac events. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00387231.
Resumo:
INTRODUCTION: Nebivolol, a highly selective beta1-adrenergic receptor-blocker, increases basal and stimulated endothelial nitric oxide (NO)-release. It is unknown, whether coronary perfusion is improved by the increase in NO availability. Therefore, we sought to evaluate the effect of nebivolol on coronary flow reserve (CFR) and collateral flow. METHODS: Doppler-flow wire derived coronary flow velocity measurements were obtained in ten controls and eight patients with coronary artery disease (CAD) at rest and after intracoronary nebivolol. CFR was defined as maximal flow during adenosine-induced hyperemia divided by resting flow. In the CAD group, collateral flow was determined after dilatation of a flow-limiting coronary stenosis. Collateral flow index (CFI) was defined as the ratio of flow velocity during balloon inflation divided by resting flow. RESULTS: CFR at rest was 3.0+/-0.6 in controls and 2.1+/-0.4 in CAD patients. After intracoronary doses of 0.1, 0.25, and 0.5 mg nebivolol, CFR increased to 3.4+/-0.7, 3.9+/-0.9, and 4.0+/-0.1 (p<0.01) in controls, and to 2.3+/-0.7, 2.6+/-0.9, and 2.6+/-0.5 (p<0.05) in CAD patients. CFI decreased significantly with intracoronary nebivolol and correlated to changes in heart rate (r=0.75, p<0.001) and rate-pressure product (r=0.59, p=0.001). DISCUSSION: Intracoronary nebivolol is associated with a significant increase in CFR due to reduction in resting flow (controls), or due to an increase in maximal coronary flow (CAD patients). CFI decreased with nebivolol parallel to the reduction in myocardial oxygen consumption.
Resumo:
AIM: To investigate the outcome of primary percutaneous coronary interventions (PCI) in elderly patients (>/=>/=75 years) with ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS: Between 1995 and 2003, a total of 319 consecutive patients with acute ST-elevation myocardial infarction presenting within 6-12 hr after onset of symptoms were prospectively enrolled in a registry. Of 296 patients undergoing primary PCI, 40 patients were >/=>/=75 years old (group A) and 256 patients younger than 75 years (group B). Elderly patients presented with a lower ejection fraction (49 +/- 14% vs. 53 +/- 13%, P = 0.046) and a higher number of cardiovascular risk factors. PCI success was achieved in 80% (group A) and 91% (group B, P = 0.031), respectively with comparable door-to-balloon times (87 +/- 49 and 95 +/- 79 min, P = ns). Periprocedural complications in both groups were low and major adverse cardiac events (death, myocardial infarction, target vessel revascularization and cardiac rehospitalization) after 6 months amounted to 23% (group A) and 20% (group B, P = ns), respectively. CONCLUSIONS: Clinical outcome of elderly patients (>/=>/=75 years) with acute STEMI is favorable and comparable with the middle-aged population. However, procedural success was significantly lower in elderly (80%) compared to younger patients (90%). Acute percutaneous coronary intervention appears to be safe and not associated with higher periprocedural complications, in elderly patients.
Resumo:
We review the case of a 48-year-old woman who underwent elective percutaneous patent foramen ovale closure following successive renal and myocardial infarction with normal renal and coronary arteries, probably as a consequence of paradoxical emboli.
Resumo:
OBJECTIVES: Membrane-targeted application of complement inhibitors may ameliorate ischemia/reperfusion (I/R) injury by directly targeting damaged cells. We investigated whether Mirococept, a membrane-targeted, myristoylated peptidyl construct derived from complement receptor 1 (CR1) could attenuate I/R injury following acute myocardial infarction in pigs. METHODS: In a closed-chest pig model of acute myocardial infarction, Mirococept, the non-tailed derivative APT154, or vehicle was administered intracoronarily into the area at risk 5 min pre-reperfusion. Infarct size, cardiac function and inflammatory status were evaluated. RESULTS: Mirococept targeted damaged vasculature and myocardium, significantly decreasing infarct size compared to vehicle, whereas APT154 had no effect. Cardioprotection correlated with reduced serum troponin I and was paralleled by attenuated local myocardial complement deposition and tissue factor expression. Myocardial apoptosis (TUNEL-positivity) was also reduced with the use of Mirococept. Local modulation of the pro-inflammatory and pro-coagulant phenotype translated to improved left ventricular end-diastolic pressure, ejection fraction and regional wall motion post-reperfusion. CONCLUSIONS: Local modification of a pro-inflammatory and pro-coagulant environment after regional I/R injury by site-specific application of a membrane-targeted complement regulatory protein may offer novel possibilities and insights into potential treatment strategies of reperfusion-induced injury.
Resumo:
Mucosal pH (pHi) is influenced by local perfusion and metabolism (mucosal-arterial Pco2 gradient, DeltaPco2), systemic metabolic acidosis (arterial bicarbonate), and respiration (arterial Pco2). We determined these components of pHi and their relation to outcome during the first 24 h of intensive care. We studied 103 patients with acute respiratory or circulatory failure (age, 63 +/- 2 [mean +/- SEM]; Acute Physiology and Chronic Health Evaluation II score, 20 +/- 1; Sequential Organ Failure Assessment score, 8 +/- 0). pHi, and the effects of bicarbonate and arterial and mucosal Pco2 on pHi, were assessed at admission, 6, and 24 h. pHi was reduced (at admission, 7.27 +/- 0.01) due to low arterial bicarbonate and increased DeltaPco2. Low pHi (<7.32) at admission (n = 58; mortality, 29% vs. 13% in those with pHi >/=7.32 at admission; P = 0.061) was associated with an increased DeltaPco2 in 59% of patients (mortality, 47% vs. 4% for patients with low pHi and normal DeltaPco2; P = 0.0003). An increased versus normal DeltaPco2, regardless of pHi, was associated with increased mortality at admission (51% vs. 5%; P < 0.0001; n = 39) and at 6 h (34% vs. 13%; P = 0.016; n = 45). A delayed normalization or persistently low pHi (n = 47) or high DeltaPco2 (n = 25) was associated with high mortality (low pHi [34%] vs. high DeltaPco2 [60%]; P = 0.046). In nonsurvivors, hypocapnia increased pHi at baseline, 6, and 24 h (all P = 0.001). In patients with initially normal pHi or DeltaPco2, outcome was not related to subsequent changes in pHi or DeltaPco2. Increased DeltaPco2 during early resuscitation suggests poor tissue perfusion and is associated with high mortality. Arterial bicarbonate contributes more to pHi than the DeltaPco2 but is not associated with mortality. Hyperventilation partly masks mucosal acidosis. Inadequate tissue perfusion may persist despite stable hemodynamics and contributes to poor outcome.
Resumo:
Although both the subjective and physiological effects of abused psychotropic substances have been characterized, less is known about their effects on brain function. We examined the actions of intravenous diacetylmorphine (heroin), the most widely abused opioid, on regional cerebral blood flow (rCBF), as assessed by perfusion-weighted MR imaging (PWI) in a double-blind and placebo-controlled setting.
Resumo:
Trials on implantable cardioverter-defibrillators (ICD) for patients after acute myocardial infarction (AMI) have highlighted the need for risk assessment of arrhythmic events (AE). The aim of this study was to evaluate risk predictors based on a novel approach of interpreting signal-averaged electrocardiogram (SAECG) and ejection fraction (EF).
Resumo:
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
Resumo:
Intramyocardial transplantation of skeletal myoblasts augments postinfarction cardiac function. However, poor survival of injected cells limits this therapy. It is hypothesized that implantation of myoblast-based scaffolds would result in greater cell survival. Rat skeletal myoblasts were seeded on highly porous polyurethane (PU) scaffolds (7.5 x 7.5 x 2.0 mm). The effect of several scaffold pretreatments, initial cell densities, and culture periods was tested by DNA-based cell count and viability assessment. Seeded PU scaffolds were implanted on infarcted hearts and immunohistology was performed 4 weeks later. Precoating with laminin allowed the most favorable cell attachment. An initial inoculation with 5 x 10(6) cells followed by a 15-day culture period resulted in optimal myoblast proliferation. Four weeks after their implantation in rats, numerous myoblasts were found throughout the seeded patches although no sign of differentiation could be observed. This myoblast seeding technique on PU allows transfer of a large number of living myoblasts to a damaged myocardium.
Resumo:
Myocardial tissue engineering aims to repair, replace, and regenerate damaged cardiac tissue using tissue constructs created ex vivo. This approach may one day provide a full treatment for several cardiac disorders, including congenital diseases or ventricular dysfunction after myocardial infarction. Although the ex vivo construction of a myocardium-like tissue is faced with many challenges, it is nevertheless a pressing objective for cardiac reparative medicine. Multidisciplinary efforts have already led to the development of promising viable muscle constructs. In this article, we review the various concepts of cardiac tissue engineering and their specific challenges. We also review the different types of existing biografts and their physiological relevance. Although many investigators have favored cardiomyocytes, we discuss the potential of other clinically relevant cells, as well as the various hypotheses proposed to explain the functional benefit of cell transplantation.
Resumo:
BACKGROUND: Minimal extracorporeal circulation (MECC) is a promising perfusion technology, taking the advantage of an ECC while having a significantly reduced priming volume. We analyzed the actual possible benefits of using MECC in patients undergoing CABG procedures and compared the results with conventional extracorporeal circulation (CECC). METHODS: One thousand fifty-three consecutive patients underwent CABG surgery using the MECC perfusion technique. Subgroup analyses focused on perioperative myocardial markers (cardiac troponin I [cTnI]), incidence of atrial fibrillation (AF), and perioperative evaluation of inflammatory markers and data were compared with those of patients who underwent CABG using CECC. A propensity score analysis was performed. RESULTS: Patient characteristics and distribution of EuroSCORE risk were similar in both groups. Severity of coronary artery disease and extent of revascularization were also comparable in both groups (number of distal anastomoses: 3.2 +/- 1.1 in CECC vs 3.2 +/- 0.9 in MECC; p = not significant [ns]). The cTnI was significantly lower in the MECC group (11.0 +/- 10.8 microg/L in MECC vs 24.7 +/- 25.3 microg/L in CECC; p < 0.05). Incidence of AF was 11.1% in MECC and 39.0% in CECC (p < 0.05). Inflammatory markers (interleukin-6, SC5b-9) were lower in MECC patients (p < 0.05). Propensity score analysis confirmed faster recovery in MECC patients and lower incidence of AF. CONCLUSIONS: Minimal extracorporeal circulation is a safe perfusion technique for CABG and may therefore concurrence OPCAB and traditional CABG under CECC.
Resumo:
OBJECTIVE: The standard heart-lung machine is a major trigger of systemic inflammatory response and the morbidity attributed to conventional extracorporeal circulation (CECC) is still significant. Reduction of blood-artificial surface contact and reduction of priming volume are principal aims in minimized extracorporeal circulation (MECC) cardiopulmonary bypass systems. The aim of this paper is to give an overview of the literature and to present our experience with the MECC-smart suction system. METHODS AND RESULTS: At our institution, 1799 patients underwent isolated coronary artery bypass grafting (CABG) surgery, 1372 with a MECC-smart suction system and 427 with CECC. All in-hospital data were assessed and the results were compared between the 2 groups. Patient characteristics and the distribution of EuroSCORE risk profile in our collective were similar between both groups. Average age in the MECC collective was 67.5 +/- 11.4 years and average EuroSCORE was 5.0 +/- 1.5. Average number of distal anastomoses was similar to the average number encountered in patients undergoing CABG surgery with CECC (3.3 +/- 1.0 for MECC versus 3.2 +/- 1.1 for CECC; P = ns). Myocardial protection is superior in MECC patients with lower postoperative maximal cTnI values (11.0 +/- 10.8 micromol/L for MECC versus 24.7 +/- 25.3 micromol/L for CECC; P < .05). Postoperative recovery was faster in patients operated on with the MECC-smart suction system and discharge from the hospital was earlier than for CECC patients (7.4 +/- 1.9 days for MECC versus 8.8 +/- 3.8 days for CECC; P < .05). CONCLUSIONS: The MECC-smart suction system is a safe perfusion technique for CABG surgery. In patients operated on with this system, the clinical outcome seems to be better than in patients operated on with CECC. This promising and less damaging perfusion technology has the potential to replace CECC systems in CABG surgery.