1000 resultados para Muscle zygomatique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the role of dietary proteins on the maintenance of skeletal muscle mass in men who may or may not be insulin-resistant. It identified that dairy foods are powerful stimulators of muscle growth however this response is reduced during insulin-resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined body image and associated behaviours among 48 adolescents (24 males, 24 females) in Tonga, as well as 48 Tongan adolescents (24 males, 24 females) living in New Zealand (NZ). There was a lack of focus on body weight and shape among adolescents in both countries. Males evidenced a high focus on muscles. Females wanted to lose weight and obtain a soft round body. There were very few differences in the body image or body change strategies of Tongan adolescents in Tonga or NZ. Sociocultural messages need to be explored further in order to better understand these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groin pain is a condition with a high prevalence in young Australian football players. It is considered that early identification of this condition allows for optimal management. Eighty-six players from two elite under-age Australian football sides were screened weekly for hip adductor muscle strength, using a hand-held dynamometer and for the onset of groin pain. The maximum variation in the average hip adductor muscle strength values of the sample was a 2.6% decrease from baseline in week 7 of the study. Twelve players (14% of the sample studied) reported groin pain for two consecutive weeks and were considered to have an onset of groin injury. The mean hip adductor muscle strength of these players was decreased significantly from baseline by an average of 11.75 ± 2.50% at the week of pain onset (F = 264.76 (1,11), p < 0.001), and 5.82 ± 5.16% in the week preceding the onset of pain (F = 14.03 (1,10), p = 0.004). These results confirm that hip adductor muscle strength is decreased both preceding and during the onset of groin injury in elite under-age Australian footballers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise or Swiss balls are increasingly being used with conventional resistance exercises. There is little evidence supporting the efficacy of this approach compared to traditional resistance training on a stable surface. Previous studies have shown that force output may be reduced with no change in muscle electromyography (EMG) activity while others have shown increased muscle EMG activity when performing resistance exercises on an unstable surface. This study compared 1RM strength, and upper body and trunk muscle EMG activity during the barbell chest press exercise on a stable (flat bench) and unstable surface (exercise ball). After familiarization, 13 subjects underwent testing for 1RM strength for the barbell chest press on both a stable bench and an exercise ball, each separated by at least 7 days. Surface EMG was recorded for 5 upper body muscles and one trunk muscle from which average root mean square of the muscle activity was calculated for the whole 1RM lift and the concentric and eccentric phases. Elbow angle during each lift was recorded to examine any range-of-motion differences between the two surfaces. The results show that there was no difference in 1RM strength or muscle EMG activity for the stable and unstable surfaces. In addition, there was no difference in elbow range-of-motion between the two surfaces. Taken together, these results indicate that there is no reduction in 1RM strength or any differences in muscle EMG activity for the barbell chest press exercise on an unstable exercise ball when compared to a stable flat surface. Moreover, these results do not support the notion that resistance exercises performed on an exercise ball are more efficacious than traditional stable exercises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The role of adrenaline in regulating muscle glycogenolysis and hormonesensitive lipase (HSL) activity during exercise was examined in six adrenalinedeficient bilaterally adrenalectomised, adrenocorticohormonalsubstituted humans (Adr) and in six healthy control individuals (Con).

2. Subjects cycled for 45 min at •70% maximal pulmonary Oμ uptake (ýO2,max) followed by 15 min at •86% ýO2,max either without (−Adr and Con) or with (+Adr) adrenaline infusion that elevated plasma adrenaline levels (45 min, 4·49 ± 0·69 nmol l¢; 60 min, 12·41 ± 1·80 nmol l¢). Muscle samples were obtained at 0, 45 and 60 min of exercise.

3. In −Adr and Con, muscle glycogen was similar at rest (−Adr, 409 ± 19 mmol (kg dry wt)¢; Con, 453 ± 24 mmol (kg dry wt)¢) and following exercise (−Adr, 237 ± 52 mmol (kg dry wt)¢; Con, 227 ± 50 mmol (kg dry wt)¢). Muscle lactate, glucose6phosphate and glucose were similar in −Adr and Con, whereas glycogen phosphorylase (aÏa + b ² 100 %) and HSL (% phosphorylated) activities increased during exercise in Con only. Adrenaline infusion increased activities of phosphorylase and HSL as well as blood lactate concentrations compared with those in −Adr, but did not enhance glycogen breakdown (+Adr, glycogen following exercise: 274 ± 55 mmol (kg dry wt)¢) in contracting muscle.

4. The present findings demonstrate that during exercise muscle glycogenolysis can occur in the absence of adrenaline, and that adrenaline does not enhance muscle glycogenolysis in exercising adrenalectomised subjects. Although adrenaline increases the glycogen phosphorylase activity it is not essential for glycogen breakdown in contracting muscle. Finally, a novel finding is that the activity of HSL in human muscle is increased in exercising man and this is due, at least partly, to stimulation by adrenaline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin1, 2, 3. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca2+, which activates inflammatory and muscle degenerative pathways4, 5, 6. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death7, 8, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca2+) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle size is tightly regulated by the synergy between anabolic and catabolic signalling pathways which, in humans, have not been well characterized. Akt has been suggested to play a pivotal role in the regulation of skeletal muscle hypertrophy and atrophy in rodents and cells. Here we measured the amount of phospho-Akt and several of its downstream anabolic targets (glycogen synthase kinase-3β (GSK-3β), mTOR, p70s6k and 4E-BP1) and catabolic targets (Foxo1, Foxo3, atrogin-1 and MuRF1). All measurements were performed in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy-stimulating resistance training and atrophy-stimulating de-training. Following resistance training a muscle hypertrophy (∼10%) and an increase in phospho-Akt, phospho-GSK-3β and phospho-mTOR protein content were observed. This was paralleled by a decrease in Foxo1 nuclear protein content. Following the de-training period a muscle atrophy (5%), relative to the post-training muscle size, a decrease in phospho-Akt and GSK-3β and an increase in Foxo1 were observed. Atrogin-1 and MuRF1 increased after the hypertrophy and decreased after the atrophy phases. We demonstrate, for the first time in human skeletal muscle, that the regulation of Akt and its downstream signalling pathways GSK-3β, mTOR and Foxo1 are associated with both the skeletal muscle hypertrophy and atrophy processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.