951 resultados para Multilayer electrodes
Resumo:
Objetivou-se, neste trabalho, avaliar o ajuste do modelo volumétrico de Schumacher e Hall por diferentes algoritmos, bem como a aplicação de redes neurais artificiais para estimação do volume de madeira de eucalipto em função do diâmetro a 1,30 m do solo (DAP), da altura total (Ht) e do clone. Foram utilizadas 21 cubagens de povoamentos de clones de eucalipto com DAP variando de 4,5 a 28,3 cm e altura total de 6,6 a 33,8 m, num total de 862 árvores. O modelo volumétrico de Schumacher e Hall foi ajustado nas formas linear e não linear, com os seguintes algoritmos: Gauss-Newton, Quasi-Newton, Levenberg-Marquardt, Simplex, Hooke-Jeeves Pattern, Rosenbrock Pattern, Simplex, Hooke-Jeeves e Rosenbrock, utilizado simultaneamente com o método Quasi-Newton e com o princípio da Máxima Verossimilhança. Diferentes arquiteturas e modelos (Multilayer Perceptron MLP e Radial Basis Function RBF) de redes neurais artificiais foram testados, sendo selecionadas as redes que melhor representaram os dados. As estimativas dos volumes foram avaliadas por gráficos de volume estimado em função do volume observado e pelo teste estatístico L&O. Assim, conclui-se que o ajuste do modelo de Schumacher e Hall pode ser usado na sua forma linear, com boa representatividade e sem apresentar tendenciosidade; os algoritmos Gauss-Newton, Quasi-Newton e Levenberg-Marquardt mostraram-se eficientes para o ajuste do modelo volumétrico de Schumacher e Hall, e as redes neurais artificiais apresentaram boa adequação ao problema, sendo elas altamente recomendadas para realizar prognose da produção de florestas plantadas.
Resumo:
Original sludge from wastewater treatment plants (WWTPs) usually has a poor dewaterability. Conventionally, mechanical dewatering methods are used to increase the dry solids (DS) content of the sludge. However, sludge dewatering is an important economic factor in the operation of WWTPs, high water content in the final sludge cake is commonly related to an increase in transport and disposal costs. Electro‐dewatering could be a potential technique to reduce the water content of the final sludge cake, but the parameters affecting the performance of electro‐dewatering and the quality of the resulting sludge cake, as well as removed water, are not sufficiently well known. In this research, non‐pressure and pressure‐driven experiments were set up to investigate the effect of various parameters and experimental strategies on electro‐dewatering. Migration behaviour of organic compounds and metals was also studied. Application of electrical field significantly improved the dewatering performance in comparison to experiments without electric field. Electro‐dewatering increased the DS content of the sludge from 15% to 40 % in non‐pressure applications and from 8% to 41% in pressure‐driven applications. DS contents were significantly higher than typically obtained with mechanical dewatering techniques in wastewater treatment plant. The better performance of the pressure‐driven dewatering was associated to a higher current density at the beginning and higher electric field strength later on in the experiments. The applied voltage was one of the major parameters affecting dewatering time, water removal rate and DS content of the sludge cake. By decreasing the sludge loading rate, higher electrical field strength was established between the electrodes, which has a positive effect on an increase in DS content of the final sludge cake. However interrupted voltage application had anegative impact on dewatering in this study, probably because the off‐times were too long. Other factors affecting dewatering performance were associated to the original sludge characteristics and sludge conditioning. Anaerobic digestion of the sludge with high pH buffering capacity, polymer addition and freeze/thaw conditioning had a positive impact on dewatering. The impact of pH on electro‐dewatering was related to the surface charge of the particles measured as zeta‐potential. One of the differences between electro‐dewatering and mechanical dewatering technologies is that electro‐dewatering actively removes ionic compounds from the sludge. In this study, dissolution and migration of organic compounds (such as shortchain fatty acids), macro metals (Na, K, Ca, Mg, Fe) and trace metals (Ni, Mn, Zn, Cr) was investigated. The migration of the metals depended on the fractionation and electrical field strength. These compounds may have both negative and positive impacts on the reuse and recycling of the sludge and removed water. Based on the experimental results of this study, electro‐dewatering process can be optimized in terms of dewatering time, desired DS content, power consumption and chemical usage.
Resumo:
Tässä työssä verrattiin monikerrosperseptronin, radiaalikantafunktioverkon, tukivektoriregression ja relevanssivektoriregression soveltuvuutta robottikäden otemallinnukseen. Menetelmille ohjelmoitiin koeympäristö Matlabiin, jossa mallit koestettiin kolmiulotteisella kappaledatalla. Koejärjestely sisälsi kaksi vaihetta. Kokeiden ensimmäisessä vaiheessa menetelmille haettiin sopivat parametrit ja toisessa vaiheessa menetelmät koestettiin. Kokeilla kerättiin dataa menetelmien keskinäiseen vertailuun. Vertailussa huomioitiin laskentanopeus, koulutusaika ja tarkkuus. Tukivektoriregressio löydettiin potentiaaliseksi vaihtoehdoksi mallintamiseen. Tukivektoriregression koetuloksia analysoitiin muita menetelmiä enemmän hyvien koetulosten takia.
Resumo:
This study provides an update on the use of Transcutaneous Eletric Nerve Stimulation (TENS) as a non-pharmacological resource of postoperative pain relief. National and international references regarding the use of TENS for the relief of postoperative pain had been selected, highlighting its mechanism of action, parameters of application, contraindications, side-effect and results. TENS is a non-pharmacological resource that has its mechanism of action based on the gate theory. It consists of a device that emits electric impulses in the skin through electrodes. It is a low cost technique, easily applicable, presents few collateral effects, good effectiveness related to the reduction of the painful perception, allowing early mobilization and reduced pharmacological analgesic consumption. TENS represents another option in the control of postoperative pain and should be inserted in a multiprofessional context.
Resumo:
Chemical coagulation is commonly used in raw water and wastewater treatment plants for the destabilisation of pollutants so that they can be removed in the subsequent separation processes. The most commonly used coagulation chemicals are aluminium and iron metal salts. Electrocoagulation technology has also been proposed for the treatment of raw waters and wastewaters. With this technology, metal cations are produced on the electrodes via electrolysis and these cations form various hydroxides in the water depending on the water pH. In addition to this main reaction, several side reactions, such as hydrogen bubble formation and the reduction of metals on cathodes, also take place in the cell. In this research, the applications of electrocoagulation were investigated in raw water treatment and wastewater applications. The surface water used in this research contained high concentrations of natural organic matter (NOM). The effect of the main parameters – current density, initial pH, electric charge per volume, temperature and electrolysis cell construction – on NOM removal were investigated. In the wastewater treatment studies, the removal of malodorous sulphides and toxic compounds from the wastewaters and debarking effluents were studied. Also, the main parameters of the treatment, such as initial pH and current density, were investigated. Aluminium electrodes were selected for the raw water treatment, whereas wastewaters and debarking effluent were treated with iron electrodes. According to results of this study, aluminium is more suitable electrode material for electrocoagulation applications because it produces Al(III) species. Metal ions and hydroxides produced by iron electrodes are less effective in the destabilisation of pollutants because iron electrodes produce more soluble and less charged Fe(II) species. However, Fe(II) can be effective in some special applications, such as sulphide removal. The resulting metal concentration is the main parameter affecting destabilisation of pollutants. Current density, treatment time, temperature and electrolysis cell construction affect the dissolution of electrodes and hence also the removal of pollutants. However, it seems that these parameters have minimal significance in the destabilization of the pollutants besides this effect (in the studied range of parameters). Initial pH and final pH have an effect on the dissolution of electrodes, but they also define what aluminium or iron species are formed in the solution and have an effect on the ζ-potential of all charged species in the solution. According to the results of this study, destabilisation mechanisms of pollutants by electrocoagulation and chemical coagulation are similar. Optimum DOC removal and low residual aluminium can be obtained simultaneously with electrocoagulation, which may be a significant benefit of electrocoagulation in surface water treatment compared to chemical coagulation. Surface water treatment with electrocoagulation can produce high quality water, which could be used as potable water or fresh water for industrial applications. In wastewater treatment applications, electrocoagulation can be used to precipitate malodorous sulphides to prevent their release into air. Technology seems to be able to remove some toxic pollutants from wastewater and could be used as pretreatment prior to treatment at a biological wastewater treatment plant. However, a thorough economic and ecological comparison of chemical coagulation and electrocoagulation is recommended, because these methods seem to be similar in pollutant destabilisation mechanisms, metal consumption and removal efficiency in most applications.
Resumo:
OBJECTIVE: to evaluate the efficacy of endovascular repair of popliteal artery aneurysms on maintaining patency of the stent in the short and medium term. METHODS: this was a retrospective, descriptive and analytical study, conducted at the Integrated Vascular Surgery Service at the Hospital da Beneficência Portuguesa de São Paulo. We followed-up 15 patients with popliteal aneurysm, totaling 18 limbs, treated with stent from May 2008 to December 2012. RESULTS: the mean follow-up was 14.8 months. During this period, 61.1% of the stents were patent. The average aneurysm diameter was 2.5cm, ranging from 1.1 to 4.5cm. The average length was 5cm, ranging from 1.5 to 10 cm. In eight cases (47.1%), the lesion crossed the joint line, and in four of these occlusion of the prosthesis occurred. In 66.7% of cases, treatment was elective and only 33.3% were symptomatic patients treated on an emergency basis. The stents used were Viabahn (Gore) in 12 cases (66.7%), Fluency (Bard) in three cases (16.7%), Multilayer (Cardiatis) in two cases (11.1%) and Hemobahn (Gore) in one case (5.6%). In three cases, there was early occlusion (16.6%). During follow-up, 88.2% of patients maintained antiplatelet therapy. There was no leakage at ultrasound (endoleak). No fracture was observed in the stents. CONCLUSION: the results of this study are similar to other published series. Probably, with the development of new devices that support the mechanical characteristics found on the thighs, there will be improved performance and prognosis of endovascular restoration.