999 resultados para Mound size
The size of diatoms. III. The cell width of Biddulphia sinensis Greville from the southern North Sea
Resumo:
Several environmental/physical variables derived from satellite and in situ data sets were used to understand the variability of coccolithophore abundance in the subarctic North Atlantic. The 7-yr (1997–2004) time-series analysis showed that the combined effects of high solar radiation, shallow mixed layer depth (<20 m), and increased temperatures explained >89% of the coccolithophore variation. The June 1998 bloom, which was associated with high light intensity, unusually high sea-surface temperature, and a very shallow mixed layer, was found to be one of the most extensive (>995,000 km2) blooms ever recorded. There was a pronounced sea-surface temperature shift in the mid-1990s with a peak in 1998, suggesting that exceptionally large blooms are caused by pronounced environmental conditions and the variability of the physical environment strongly affects the spatial extent of these blooms. Consequently, if the physical environment varies, the effects of these blooms on the atmospheric and oceanic environment will vary as well.
Resumo:
Here we describe a new trait-based model for cellular resource allocation that we use to investigate the relative importance of different drivers for small cell size in phytoplankton. Using the model, we show that increased investment in nonscalable structural components with decreasing cell size leads to a trade-off between cell size, nutrient and light affinity, and growth rate. Within the most extreme nutrient-limited, stratified environments, resource competition theory then predicts a trend toward larger minimum cell size with increasing depth. We demonstrate that this explains observed trends using a marine ecosystem model that represents selection and adaptation of a diverse community defined by traits for cell size and subcellular resource allocation. This framework for linking cellular physiology to environmental selection can be used to investigate the adaptive response of the marine microbial community to environmental conditions and the adaptive value of variations in cellular physiology.
Resumo:
Measurements of suspended particle matter (SPM) and turbulence have been obtained over five tidal surveys during spring and summer 2010 at station L4 (5025 degrees N 04.22 degrees W, depth 50 m), in the Western English Channel. The relationship between turbulence intensity and bed stress is explored, with an in-line holographic imaging system evaluating the extent to which material is resuspended. Image analysis allows for the identification of SPM above a size threshold of 200 pm, capturing particle variability across tidal cycles and the two seasons. Dissipation of turbulent kinetic energy, which exceeds 10(-5) W kg(-1), yields maximum values of bed stress of between 0.17 and 0.20 N m(-2), frequently resulting in the resuspension of material from the bed. Resuspension is shown to promote aggregation of SPM into flocs, where the size of such particles is theoretically determined by the Kolmogorov microscale, l(k). During the spring surveys, flocs of a size larger than lk were observed, though this was not repeated during summer. It is proposed that the presence of gelatinous, biological material in spring allows flocculated particles to exceed l(k). This suggests that under specific circumstances, the limiting factor on the growth of flocculated SPM is not only turbulence, as previously thought, but the presence or absence of certain types of biological particle.
Resumo:
Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.