957 resultados para Motor vehicles, Russian.
Resumo:
Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.
Resumo:
This paper demonstrates light-load instability in a 100-kW open-loop induction motor drive on account of inverter deadtime. An improved small-signal model of an inverter-fed induction motor is proposed. This improved model is derived by linearizing the nonlinear dynamic equations of the motor, which include the inverter deadtime effect. Stability analysis is carried out on the 100-kW415-V three-phase induction motor considering no load. The analysis brings out the region of instability of this motor drive on the voltage versus frequency (V-f) plane. This region of light-load instability is found to expand with increase in inverter deadtime. Subharmonic oscillations of significant amplitude are observed in the steady-state simulated and measured current waveforms, at numerous operating points in the unstable region predicted, confirming the validity of the stability analysis. Furthermore, simulation and experimental results demonstrate that the proposed model is more accurate than an existing small-signal model in predicting the region of instability.
Resumo:
This paper investigates possible reduction of pulsating torque in open-loop and vector-controlled induction motor drives through deployment of certain advanced bus-clamping pulsewidth modulation (ABCPWM) method. Toward this goal, a simple and machine-independent method is proposed to analyze the torque harmonic spectrum of a voltage source inverter fed induction motor, operated with any real-time pulsewidth modulation (PWM) method. The analytically evaluated torque harmonic spectra, pertaining to conventional space vector PWM (CSVPWM), bus-clamping PWM (BCPWM), and ABCPWM, are validated through simulation and experimental results. Theoretical and experimental studies bring out the superiority of the ABCPWM in terms of torque harmonics over CSVPWM and BCPWM. The magnitude of the dominant torque harmonic with the ABCPWM scheme is shown to be significantly lower than that with CSVPWM, over a wide range of speed. The rms torque ripple (i.e., total rms value of all harmonic torques) is lower with ABCPWM than with BCPWM over the entire range of speed.
Resumo:
A split-phase induction motor is fed from two three-phase voltage source inverters for speed control. This study analyses carrier-comparison based pulse width modulation (PWM) schemes for a split-phase motor drive, from a space-vector perspective. Sine-triangle PWM, one zero-sequence injection PWM where the same zero-sequence signal is used for both the inverters, and another zero-sequence injection PWM where different zero-sequence signals are employed for the two inverters are considered. The set of voltage vectors applied, the sequence in which the voltage vectors are applied, and the resulting current ripple vector are analysed for all the PWM methods. Besides all the PWM methods are compared in terms of dc bus utilisation. For the same three-phase sine reference, the PWM method with different zero-sequence signals for the two inverters is found to employ a set of vectors different from the other methods. Both analysis and experimental results show that this method results in lower total harmonic distortion and higher dc bus utilisation than the other two PWM methods.
Resumo:
A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.
Resumo:
Constant-volts-per-hertz induction motor drives and vector-controlled induction motor drives utilize pulsewidth modulation (PWM) to control the voltage applied on the motor. The method of PWM influences the pulsations in the torque developed by the motor. A space-vector-based approach to PWM facilitates special switching sequences involving the division of active state time. This paper proposes a space-vector-based hybrid PWM technique, which is a combination of the conventional and special switching sequences. The proposed hybrid PWM technique results in a lower peak-to-peak torque ripple than conventional space vector PWM(CSVPWM) at high speeds of an induction motor drive. Furthermore, the magnitude of the dominant torque harmonic due to the proposed hybrid PWM is significantly lower than that due to CSVPWM at high speeds of the drive. Experimental results from a 3.75-kW sensorless vector-controlled induction motor drive under various load conditions are presented to support analytical and simulation results.
Resumo:
The objective of this paper is to study the influence of inverter dead-time on steady as well as dynamic operation of an open-loop induction motor drive fed from a voltage source inverter (VSI). Towards this goal, this paper presents a systematic derivation of a dynamic model for an inverter-fed induction motor, incorporating the effect of inverter dead-time, in the synchronously revolving dq reference frame. Simulation results based on this dynamic model bring out the impact of inverter dead-time on both the transient response and steady-state operation of the motor drive. For the purpose of steady-state analysis, the dynamic model of the motor drive is used to derive a steady-state model, which is found to be non-linear. The steady-state model shows that the impact of dead-time can be seen as an additional resistance in the stator circuit, whose value depends on the stator current. Towards precise evaluation of this dead-time equivalent resistance, an analytical expression is proposed for the same in terms of inverter dead-time, switching frequency, modulation index and load impedance. The notion of dead-time equivalent resistance is shown to simplify the solution of the non-linear steady-state model. The analytically evaluated steady-state solutions are validated through numerical simulations and experiments.
Resumo:
The relative influence of various heavy vehicle design features on road-damaging potential is discussed. Testing procedures that could be used to measure the road-damaging potential of heavy vehicles are examined. A validated vehicle simulation is used to examine some of the characteristics of dynamic tyre forces generated by typical leaf sprung and air sprung articulated heavy vehicles for typical highway conditions. The proposed EC suspension test is simulated and the results compared with dynamic tyre forces generated under highway conditions. It is concluded that the road-damaging potential of a vehicle cannot be assessed by the simplistic parametric measurement of the proposed EC test. It is questionable whether a vehicle that passes the test will be any more 'road friendly' than one that fails.
Resumo:
Road damage due to heavy vehicles is thought to be dependent on the extent to which lorries in normal traffic apply peak forces to the same locations along the road. A validated vehicle simulation is used to simulate 37 leaf-sprung articulated vehicles with parametric variations typical of vehicles in one weight class in the highway vehicle fleet. The spatial distribution of tyre forces generated by each vehicle is compared with the distribution generated by a reference vehicle, and the conditions are established for which repeated heavy loading occurs at specific points along the road. It is estimated that approximately two-thirds of vehicles in this class (a large proportion of all heavy vehicles) may contribute to a repeated pattern of road loading. It is concluded that dynamic tyre forces are a significant factor influencing road damage, compared to other factors such as tyre configuration and axle spacing.