998 resultados para Modified ink mileage
Resumo:
Zirconia modified SBA-15 becomes a very active catalyst for the selective hydrolysis of cellobiose to glucose after sulfation. Spectroscopic investigations indicate the presence of Bronsted acid sites with similar properties to those present in conventional sulfated zirconia. Indications are found that the sulfate groups attached to zirconia interact with silanol groups of SBA-15. The catalytic activity in cellobiose hydrolysis correlates well with results for temperature-programmed decomposition of i-propylamine for a range of sulfated ZrO2/SBA-15 catalysts. A glucose yield of 60% during cellobiose hydrolysis at a reaction time of 90 min at 160 degrees C is obtained.
Resumo:
A postbuckling blade-stiffened composite panel was loaded in uniaxial compression, until failure. During loading beyond initial buckling, this panel was observed to undergo a secondary instability characterised by a dynamic mode shape change. These abrupt changes cause considerable numerical difficulties using standard path-following quasi-static solution procedures in finite element analysis. Improved methods such as the arc-length-related procedures do better at traversing certain critical points along an equilibrium path but these procedures may also encounter difficulties in highly non-linear problems. This paper presents a robust, modified explicit dynamic analysis for the modelling of postbuckling structures. This method was shown to predict the mode-switch with good accuracy and is more efficient than standard explicit dynamic analysis. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The problem of model selection of a univariate long memory time series is investigated once a semi parametric estimator for the long memory parameter has been used. Standard information criteria are not consistent in this case. A Modified Information Criterion (MIC) that overcomes these difficulties is introduced and proofs that show its asymptotic validity are provided. The results are general and cover a wide range of short memory processes. Simulation evidence compares the new and existing methodologies and empirical applications in monthly inflation and daily realized volatility are presented.
Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy?
Resumo:
Aims/hypothesis: Blood–retina barrier leakage in diabetes results in extravasation of plasma lipoproteins. Intra-retinal modified LDLs have been implicated in diabetic retinopathy (DR), but their effects on retinal pigment epithelial (RPE) cells and the added effects of extravasated modified HDLs are unknown.
Methods: In human retinas from individuals with and without diabetes and DR, immunohistochemistry was used to detect ApoB, ApoA1 and endoplasmic reticulum (ER) stress markers. In cell culture, human RPE cells were treated with native LDL (N-LDL) or heavily-oxidised glycated LDL (HOG-LDL) with or without pretreatment with native HDL (N-HDL) or heavilyoxidised glycated HDL (HOG-HDL). Cell viability, oxidative stress, ER stress, apoptosis and autophagy were assessed by Cell Counting Kit-8 assay, dichlorofluorescein assay, western blotting, immunofluorescence and TUNEL assay. In separate
experiments, RPE cells were treated with lipid oxidation products, 7-ketocholesterol (7-KC, 5–40 µmol/l) or 4-hydroxynonenal (4-HNE, 5–80 µmol/l), with or without pretreatment with N-HDL or HOG-HDL.
Results: ApoB, ApoA1 staining and RPE ER stress were increased in the presence of DR. HOG-LDL but not N-LDL significantly decreased RPE cell viability and increased reactive oxygen species generation, ER stress, apoptosis and autophagy. Similarly, 4-HNE and 7-KC decreased viability and induced ER stress. Pretreatment with N-HDL mitigated these effects, whereas HOG-HDL was less effective by most, but not all, measures.
Conclusions/interpretation: In DR, extravascular modified LDL may promote RPE injury through oxidative stress, ER stress, autophagy and apoptosis. N-HDL has protective effects, but HOG-HDL is less effective. Extravasation and modification of HDL may modulate the injurious effects of extravasated modified LDL on the retinal pigment epithelium.
Resumo:
Aims/hypothesis: In previous studies we have shown that extravasated, modified LDL is associated with pericyte loss, an early feature of diabetic retinopathy (DR). Here we sought to determine detailed mechanisms of this LDLinduced pericyte loss.
Methods: Human retinal capillary pericytes (HRCP) were exposed to ‘highly-oxidised glycated’ LDL (HOG-LDL) (a model of extravasated and modified LDL) and to 4-hydroxynonenal or 7-ketocholesterol (components of oxidised LDL), or to native LDL for 1 to 24 h with or without 1 h of pretreatment with inhibitors of the following: (1) the scavenger receptor (polyinosinic acid); (2) oxidative stress (N-acetyl cysteine); (3) endoplasmic reticulum (ER) stress (4-phenyl butyric acid); and (4) mitochondrial dysfunction (cyclosporin A). Oxidative stress, ER stress, mitochondrial dysfunction, apoptosis and autophagy were assessed using techniques including western blotting, immunofluorescence, RT-PCR, flow cytometry and TUNEL assay. To assess the relevance of the results in vivo, immunohistochemistry was used to detect the ER stress chaperon, 78 kDa glucose-regulated protein, and the ER sensor, activating transcription factor 6, in retinas from a mouse model of DR that mimics exposure of the retina to elevated glucose and elevated LDL levels, and in retinas from human participants with and without diabetes and DR.
Results: Compared with native LDL, HOG-LDL activated oxidative and ER stress in HRCP, resulting in mitochondrial dysfunction, apoptosis and autophagy. In a mouse model of diabetes and hyperlipidaemia (vs mouse models of either condition alone), retinal ER stress was enhanced. ER stress was also enhanced in diabetic human retina and correlated with the severity of DR.
Conclusions/interpretation: Cell culture, animal, and human data suggest that oxidative stress and ER stress are induced by modified LDL, and are implicated in pericyte loss in DR.
Resumo:
We previously showed that extravasated, modified LDL is implicated in pericyte loss in diabetic retinopathy (DR). Here, we investigate whether modified LDL induces apoptosis in retinal Müller glial cells.
Resumo:
According to a current paradigm cardiovascular diseases can be initiated by exposure of vascular cells to qualitatively modified low-density lipoproteins (LDL). Capillary leakage, an early feature of diabetic retinopathy, results in the exposure of retinal pericytes to modified LDL, including glycated (G-LDL) and heavily oxidized glycated LDL (HOG-LDL). We demonstrate here that modified LDL inhibits the proliferation and survival of cultured human retinal pericytes. Modified LDL also induced DNA fragmentation in bovine retinal pericytes. Overall, HOG-LDL produced a significantly higher extent of cytotoxicity and apoptosis in retinal pericytes. These results indicate that exposure of pericytes to HOG-LDL could be implicated in the development of diabetic retinopathy.
Resumo:
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.
Resumo:
Compared with normal low density lipoprotein (N-LDL), LDL minimally modified in vitro by glycation, minimal oxidation, or glycoxidation (G-, MO-, GO-LDL) decreases survival of cultured retinal capillary endothelial cells and pericytes. Similar modifications occurring in vivo in diabetes may contribute to retinopathy. The goal of this study was to determine whether low concentrations of aminoguanidine might prevent cytotoxic modification of LDL and/or protect retinal capillary cells from previously modified LDL.
Resumo:
Glycation and/or oxidation of LDL may promote diabetic nephropathy. The mitogen-activated protein kinase (MAPK) cascade, which includes extracellular signal-regulated protein kinases (ERKs), modulates cell function. Therefore, we examined the effects of LDL on ERK phosphorylation in cultured rat mesangial cells. In cells exposed to 100 microg/ml native LDL or LDL modified by glycation, and/or mild or marked (copper-mediated) oxidation, ERK activation peaked at 5 min. Five minutes of exposure to 10-100 microg/ml native or modified LDL produced a concentration-dependent (up to sevenfold) increase in ERK activity. Also, 10 microg/ml native LDL and mildly modified LDL (glycated and/or mildly oxidized) produced significantly greater ERK activation than that induced by copper-oxidized LDL +/- glycation (P <0.05). Pretreatment of cells with Src kinase and MAPK kinase inhibitors blocked ERK activation by 50-80% (P <0.05). Native and mildly modified LDL, which are recognized by the native LDL receptor, induced a transient spike of intracellular calcium. Copper-oxidized (+/- glycation) LDL, recognized by the scavenger receptor, induced a sustained rise in intracellular calcium. The intracellular calcium chelator (EGTA/AM) further increased ERK activation by native and mildly modified LDL (P <0.05). These findings demonstrate that native and modified LDL activate ERKs 1 and 2, an early mitogenic signal, in mesangial cells and provide evidence for a potential link between modified LDL and the development of glomerular injury in diabetes.
Resumo:
We determined whether pre-enrichment of low density lipoproteins (LDL) with alpha-tocopherol mitigates their adverse effects, following in vitro glycation, oxidation or glycoxidation, towards cultured bovine retinal capillary endothelial cells (RCEC) and pericytes.
Resumo:
To investigate the role of modified low-density lipoproteins (LDL) in the pathogenesis of diabetic retinopathy, we studied the cytotoxicity of normal and mildly modified human LDL to bovine retinal capillary endothelial cells and pericytes in vitro. Pooled LDL was incubated (in phosphate-buffered saline-EDTA, 3 days, 37 degrees C) under 1) nitrogen with additional chelating agents and 2) air, to prepare normal and minimally oxidized LDL, respectively. Similar conditions, but with the addition of 50 mM D-glucose, were used to prepare glycated and glycoxidized LDL. None of the LDL preparations was recognized by the macrophage scavenger receptor, confirming limited modification. Retinal capillary endothelial cells and pericytes were grown to confluence and then exposed for 2 or 3 days to serum-free medium (1% albumin) supplemented with normal or modified LDL (100 mg/l) or to serum-free medium alone. Cytotoxicity was assessed by cell counting (live and total cells) and by cell protein determination. Compared with normal LDL, modified LDL were cytotoxic to both cell types at both time points, causing highly significant decreases in live and total cell counts (P <0.001) (analysis of variance). Reductions in cell protein also were significant for pericytes at day 3 (P = 0.016) and of borderline significance for endothelial cells at day 2 (P = 0.05) and day 3 (P = 0.063). Cytotoxicity increased as follows: normal <glycated <or = minimally oxidized <glycoxidized LDL. We conclude that, in diabetes, mild modification of LDL resulting from separate or combined processes of glycation and oxidation may contribute to chronic retinal capillary injury and thus to the development of diabetic retinopathy.
Resumo:
Modified lipoproteins induce autoimmune responses including the synthesis of autoantibodies with pro-inflammatory characteristics. Circulating modified lipoprotein autoantibodies combine with circulating antigens and form immune complexes (IC). We now report the results of a study investigating the role of circulating IC containing modified lipoproteins in the progression of carotid intima-media thickness (IMT) in patients enrolled in the Epidemiology of Diabetes Interventions and Complications (EDIC) Trial, a follow-up study of the Diabetes Control and Complications Trial (DCCT). This cohort includes 1229 patients with type 1 diabetes in whom B-mode ultrasonography of internal and common carotid arteries was performed in 1994-1996 and in 1998-2000. Conventional CHD risk factors, antibodies against modified forms of LDL and modified lipoprotein IC were determined in 1050 of these patients from blood collected in 1996-1998. Cholesterol and apolipoprotein B content of IC (surrogate markers of modified ApoB-rich lipoproteins) were significantly higher in patients who showed progression of the internal carotid IMT than in those showing no progression, regression or mild progression. Multivariate linear and logistic regression modeling using conventional and non-conventional risk factors showed that the cholesterol content of IC was a significant positive predictor of internal carotid IMT progression. In conclusion these data demonstrate that increased levels of modified ApoB-rich IC are associated with increased progression of internal carotid IMT in the DCCT/EDIC cohort of type 1 diabetes.
Resumo:
The electrochemical deposition of Ru on Pt(111) electrodes has been investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry in a closed UHV transfer system. At small coverages Ru formed a monatomic commensurate layer, at higher coverage mostly small islands with a bilayer height were detected. When the Pt was almost completely covered by Ru, three-dimensional clusters developed. The island structure of Ru changed upon electrooxidation of CO, reflecting an enhanced mobility of Ru. Adsorption and electrooxidation of CO have been studied on such Ru-modified Pt(111) electrodes using cyclic voltammetry and in situ FTIR spectroscopy. Compared to the pure metals, the Ru-CO bond is weakened, the Pt-CO bond strengthened on the modified electrodes. The catalytic activity of the Ru/Pt(111) electrode toward CO adlayer oxidation is higher than that of pure Ru and a PtRu alloy (50:50). It is concluded that the electrooxidation of CO takes place preferentially at the Ru islands, while CO adsorbed on Pt migrates to them. © 1999 American Chemical Society.
Resumo:
PURPOSE: To assess the effects of advanced glycation endproduct (AGE) modification of vascular basement membrane (BM) on endothelin-1 (Et-1) induced intracellular [Ca2+] ([Ca2+]i) homeostasis and contraction in retinal microvascular pericytes (RMP). METHODS: RMPs were isolated from bovine retinal capillaries and propagated on AGE modified BM extract (AGE-BM) or non-modified native BM. Cytosolic Ca2+ was estimated using fura-2 microfluorimetry and cellular contraction determined by measurement of planimetric cell surface area. ETA receptor mRNA and protein expression was assessed by real time RT-PCR and western blotting, respectively. RESULTS: Exogenous endothelin-1 (Et-1) evoked rises in [Ca2+]i and contraction in RMPs were found to be mediated entirely through ETA receptor (ETAR) activation. Both peak and plateau phases of the Et-1 induced [Ca2+]i response and contraction were impaired in RMPs propagated on AGE modified BM. ETAR mRNA expression remained unchanged in RMPs exposed to native or AGE-BM, but protein expression for ETAR (66 kDa) was lower in the AGE exposed cells. CONCLUSIONS: These results suggest that substrate derived AGE crosslinks can influence RMP physiology by mechanisms which include disruption of ETA receptor signalling. AGE modification of vascular BMs may contribute to the retinal hemodynamic abnormalities observed during diabetes.