991 resultados para Mixed layer instabilities


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A record of deep-sea calcite saturation (D[CO3**-2]), derived from X-ray computed tomography-based foraminifer dissolution index, XDX, was constructed for the past 150 ka for a core from the deep (4157 m) tropical western Indian Ocean. G. sacculifer and N. dutertrei recorded a similar dissolution history, consistent with the process of calcite compensation. Peaks in calcite saturation (~15 µmol/kg higher than the present-day value) occurred during deglaciations and early in MIS 3. Dissolution maxima coincided with transitions to colder stages. The mass record of G. sacculifer better indicated preservation than did that of N. dutertrei or G. ruber. Dissolution-corrected Mg/Ca-derived SST records, like other SST records from marginal Indian Ocean sites, showed coolest temperatures of the last 150 ka in early MIS 3, when mixed layer temperatures were ~4°C lower than present SST. Temperatures recorded by N. dutertrei showed the thermocline to be ~4°C colder in MIS 3 compared to the Holocene (8 ka B.P.).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable isotope data from eastern equatorial Pacific (EEP) core TR163-19 (2°15'N, 90°57'W, 2348 m) are presented for the surface-dwelling foraminifers Globigerinoides ruber and G. sacculifer and thermocline-dwelling Globorotalia menardii and Neogloboquadrina dutertrei. Using species-specific normalization factors derived from experimental and plankton tow data, we reconstruct a 360 kyr record of water column hydrography across the past three glacial cycles. We demonstrate that G. ruber maintains a mixed layer habitat throughout the entire record, while G. sacculifer records a mixture of thermocline and mixed layer conditions and G. menardii and N. dutertrei record thermocline properties. We conclude that G. sacculifer is not appropriate for paleoceanographic applications in regions with steep vertical hydrographic gradients. Results suggest that this region of the EEP had a thicker mixed layer and deeper d13CDIC boundary between the surface and equatorial undercurrent during the last two glacial periods. A shift in N. dutertrei and G. sacculifer geochemistry prior to ~185 kyr suggests water column structure and chemocline gradients changed, possibly due to a shift in the position of the undercurrent relative to this site. The timing and magnitude of glacial-interglacial d13C variations between species indicates that near-surface carbon chemistry is controlled by changes in productivity, atmospheric circulation, and advected intermediate water sources north of the Antarctic polar front. These results demonstrate that when properly calibrated for species differences, multispecies geochemical data sets can be invaluable for reconstructing water column structure and properties in the past.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiocarbon-age measurements on single species of foraminifera from a core on the Ceara Rise demonstrate the importance of the joint effect of bioturbation and variable rain abundance of foraminifera. The relatively high mixed layer ages for Pulleniatina obliquiloculata reflect, at least in part, an early Holocene peak in its abundance while the relatively young ages for Globorotalia menardii reflect the delay until mid Holocene of its reappearance in the Atlantic Ocean. These results clearly demonstrate that core-top sediment samples need not be representative foraminifera falling from today's surface ocean. Rather, at least on the Ceara Rise, such samples consist of a composite of changing species groupings. These results also reconfirm the pitfalls associated with attempts to reconstruct the radiocarbon age of deep ocean water on the basis of benthic-planktonic foraminiferal age differences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A molecular organic geochemical proxy (TEX86) for sea surface temperature (SST) is compared with a foraminifera-based SST proxy (Mg/Ca) in a decadal-resolution marine sedimentary record spanning the last 1000 years from the Gulf of Mexico. We assess the relative strengths of the organic and inorganic paleoceanographic techniques for reconstructing high-resolution SST variability during recent climate events, including the Little Ice Age (LIA) and the Medieval Warm Period (MWP). SST estimates based on the molecular organic proxy TEX86 show a similar magnitude and pattern of SST variability to foraminiferal Mg/Ca-SST estimates but with some important differences. For instance, both proxies show a cooling (1°C-2°C) of Gulf of Mexico SSTs during the LIA. During the MWP, however, Mg/Ca-SSTs are similar to near-modern SSTs, while TEX86 indicates SSTs that were cooler than modern. Using the respective SST calibrations for each proxy results in TEX86-SST estimates that are 2°C-4°C warmer than Mg/Ca-SST throughout the 1000 year record. We interpret the TEX86-SST as a summer-weighted SST signal from the upper mixed layer, whereas the Mg/Ca-SST better reflects the mean annual SST. Downcore differences in the SST estimates between the two proxies (DeltaT = TEX86 - Mg/Ca) are interpreted in the context of varying seasonality and/or changing water column temperature gradients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change is expected to bring about alterations in the marine physical and chemical environment that will induce changes in the concentration of dissolved CO2 and in nutrient availability. These in turn are expected to affect the physiological performance of phytoplankton. In order to learn how phytoplankton respond to the predicted scenario of increased CO2 and decreased nitrogen in the surface mixed layer, we investigated the diatom Phaeodactylum tricornutum as a model organism. The cells were cultured in both low CO2 (390 µatm) and high CO2 (1000 µatm) conditions at limiting (10 µmol/L) or enriched (110 µmol/L) nitrate concentrations. Our study shows that nitrogen limitation resulted in significant decreases in cell size, pigmentation, growth rate and effective quantum yield of Phaeodactylum tricornutum, but these parameters were not affected by enhanced dissolved CO2 and lowered pH. However, increased CO2 concentration induced higher rETRmax and higher dark respiration rates and decreased the CO2 or dissolved inorganic carbon (DIC) affinity for electron transfer (shown by higher values for K1/2 DIC or K1/2 CO2). Furthermore, the elemental stoichiometry (carbon to nitrogen ratio) was raised under high CO2 conditions in both nitrogen limited and nitrogen replete conditions, with the ratio in the high CO2 and low nitrate grown cells being higher by 45% compared to that in the low CO2 and nitrate replete grown ones. Our results suggest that while nitrogen limitation had a greater effect than ocean acidification, the combined effects of both factors could act synergistically to affect marine diatoms and related biogeochemical cycles in future oceans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Benthic foraminiferal and calcareous nannofossil assemblages, as well as stable isotope data from the Campanian/Maastrichtian boundary interval (~71.4 to ~70.7 Ma) of the Kronsmoor section (North German Basin), were investigated in order to characterize changes in surface-water productivity and oxygen content at the seafloor and their link to climatic and paleoceanographic changes. A nutrient index based on calcareous nannofossils is derived for the high-latitude, epicontinental North German Basin, reflecting changes in surface-water productivity. Oxygen isotopes of well-preserved planktic foraminiferal specimens of Heterohelix globulosa reflect warmer surface-water temperatures in the lower part of the studied succession and a cooling of up to 2°C (0.5 per mil) in the upper part (after 71.1 Ma). For the lower and warmer part of the investigated succession, benthic foraminiferal assemblages and the calcareous nannofossils indicate well-oxygenated bottom waters and low-surface water productivity. In contrast, the upper part of the succession is characterized by cooler conditions, lower oxygen content at the seafloor and increasing surface-water productivity. It is proposed that the cooling phase starting at 71.1 Ma was accompanied by increasing surface-water mixing caused by westerly winds. As a consequence of mixing, nutrients were advected from sub-surface waters into the mixed layer, resulting in increased surface-water productivity and enhanced organic matter flux to the seafloor. We hypothesize that global sea-level fall during the earliest Maastrichtian (~71.3 Ma), indicated by decreasing carbon isotope values, may have led to a weaker water mass exchange through narrower gateways between the Boreal Realm and the open North Atlantic and Tethys oceans. Both the weaker water mass exchange and enhanced surface-water productivity may have led to slightly less ventilated bottom waters of the upper part of the studied section. Our micro-paleontological and stable isotopic approach indicates short-term (<100 kyr) changes in oxygen consumption at the seafloor and surface-water productivity across the homogeneous Boreal White Chalk succession of the North German Basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In large parts of the Southern Ocean, primary production is limited due to shortage of iron (Fe). We measured vertical Fe profiles in the western Weddell Sea, Weddell-Scotia Confluence, and Antarctic Circumpolar Current (ACC), showing that Fe is derived from benthic Fe diffusion and sediment resuspension in areas characterized by high turbulence due to rugged bottom topography. Our data together with literature data reveal an exponential decrease of dissolved Fe (DFe) concentrations with increasing distance from the continental shelves of the Antarctic Peninsula and the western Weddell Sea. This decrease can be observed 3500 km eastward of the Antarctic Peninsula area, downstream the ACC. We estimated DFe summer fluxes into the upper mixed layer of the Atlantic sector of the Southern Ocean and found that horizontal advection dominates DFe supply, representing 54 ± 15% of the total flux, with significant vertical advection second most important at 29 ± 13%. Horizontal and vertical diffusion are weak with 1 ± 2% and 1 ± 1%, respectively. The atmospheric contribution is insignificant close to the Antarctic continent but increases to 15 ± 10% in the remotest waters (>1500 km offshore) of the ACC. Translating Southern Ocean carbon fixation by primary producers into biogenic Fe fixation shows a twofold excess of new DFe input close to the Antarctic continent and a one-third shortage in the open ocean. Fe recycling, with an estimated 'fe' ratio of 0.59, is the likely pathway to balance new DFe supply and Fe fixation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon isotopic signatures (d30Si) of water column silicic acid (Si(OH)4) were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone) down to 57° S (northern Weddell Gyre). This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC). d30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW), the Antarctic Intermediate Water (AAIW), and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the d30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW d30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the d30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers. Through the use of d30Si constraints, net biogenic silica production (representative of annual export), at the Greenwich Meridian is estimated to be 5.2 ± 1.3 and 1.1 ± 0.3 mol Si/m**2 for the Antarctic Zone and Polar Front Zone, respectively. This is in good agreement with previous estimations. Furthermore, summertime Si-supply into the mixed layer of both zones, via vertical mixing, is estimated to be 1.6 ± 0.4 and 0.1 ± 0.5 mol Si/m**2, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to examine the spatial distribution of organic-walled dinoflagellate cysts (dinocysts) in recent sediments related to environmental conditions in the water column, thirty-two surface sediment samples from the NW African upwelling region (20-32°N) were investigated. Relative abundances of the dinocyst species show distinct regional differences allowing the separation of four hydrographic regimes. (1) In the area off Cape Ghir, which is characterized by most seasonal upwelling and river discharge, Lingulodinium machaerophorum strongly dominates the associations which are additionally characterized by cysts of Gymnodinium nolleri, cysts of Polykrikos kofoidii and cysts of Polykrikos schwartzii. (2) Off Cape Yubi, a region with increasing perennial upwelling, L. machaerophorum, Brigantedinium spp., species of the genus Impagidinium and cysts of Protoperidinium stellatum occur in highest relative abundances. (3) In coastal samples between Cape Ghir and Cape Yubi, Gymnodinium catenatum, species of the genus Impagidinium, Nematosphaeropsis labyrinthus, Operculodinium centrocarpum, cysts of P. stellatum and Selenopemphix nephroides determine the species composition. (4) Off Cape Blanc, where upwelling prevails perennially, and at offshore sites, heterotrophic dinocyst species show highest relative abundances. A Redundancy Analysis reveals fluvial mud, sea surface temperature and the depth of the mixed layer in boreal spring (spring) as the most important parameters relating to the dinocyst species association. Dinocyst accumulation rates were calculated for a subset of samples using well-constrained sedimentation rates. Highest accumulation rates with up to almost 80.000 cysts cm**-2 ky**-1 were found off Cape Ghir and Cape Yubi reflecting their eutrophic upwelling filaments. A Redundancy Analysis gives evidence that primary productivity and the input of fluvial mud are mostly related to the dinocyst association. By means of accumulation rate data, quantitative cyst production of individual species can be considered independently from the rest of the association, allowing autecological interpretations. We show that a combined interpretation of relative abundances and accumulation rates of dinocysts can lead to a better understanding of the productivity conditions off NW Africa.