989 resultados para MgF2, Huzinaga basis set
Resumo:
Results of analysis of part of the data collected during October, 1989 to December, 1990 are given on the biology and catch assessment studies on the Estuarine Set Bagnet (ESBN) from six sampling stations covering the entire coast line of Bangladesh. Length frequency analysis of seven most commonly occurring penaeid shrimp species have been done with complete ELEFAN software package. The result of exploitation patterns indicate that all penaeids except P. stylifera are being over exploited on their way back to the Sea from the nursery ground. This appeared to be the instances of serious growth over fishing. These species are exploited at a size much lower than the length at first maturity, which strongly suggests a complete withdrawal of the bagnet fishery from the coast of Bangladesh.
Resumo:
This paper reports the application of Advanced Process Control (APC) techniques for improving the thermal energy efficiency of a paperboard-making process by regulating the Machine Direction (MD) profile of the basis weight and moisture content of the paper-board. A Model Predictive Controller (MPC) is designed so that the sheet moisture and basis weight tracking errors along with variations of the sheet moisture and basis weight are reduced. Also, the drainage is maximised through improved wet-end stability which can facilitate driving the sheet moisture set-point closer to its upper specification limit over time. It is shown that the proposed strategy can result in reducing steam usage by 8-10%. A simulation study based on a UK board machine is presented to show the effectiveness of the proposed technique. © 2011 Intl Journal of Adv Mechatr.
Resumo:
In this article, we detail the methodology developed to construct arbitrarily high order schemes - linear and WENO - on 3D mixed-element unstructured meshes made up of general convex polyhedral elements. The approach is tailored specifically for the solution of scalar level set equations for application to incompressible two-phase flow problems. The construction of WENO schemes on 3D unstructured meshes is notoriously difficult, as it involves a much higher level of complexity than 2D approaches. This due to the multiplicity of geometrical considerations introduced by the extra dimension, especially on mixed-element meshes. Therefore, we have specifically developed a number of algorithms to handle mixed-element meshes composed of convex polyhedra with convex polygonal faces. The contribution of this work concerns several areas of interest: the formulation of an improved methodology in 3D, the minimisation of computational runtime in the implementation through the maximum use of pre-processing operations, the generation of novel methods to handle complex 3D mixed-element meshes and finally the application of the method to the transport of a scalar level set. © 2012 Global-Science Press.
Resumo:
In recent years, there has been an increased number of sequenced RNAs leading to the development of new RNA databases. Thus, predicting RNA structure from multiple alignments is an important issue to understand its function. Since RNA secondary structures are often conserved in evolution, developing methods to identify covariate sites in an alignment can be essential for discovering structural elements. Structure Logo is a technique established on the basis of entropy and mutual information measured to analyze RNA sequences from an alignment. We proposed an efficient Structure Logo approach to analyze conservations and correlations in a set of Cardioviral RNA sequences. The entropy and mutual information content were measured to examine the conservations and correlations, respectively. The conserved secondary structure motifs were predicted on the basis of the conservation and correlation analyses. Our predictive motifs were similar to the ones observed in the viral RNA structure database, and the correlations between bases also corresponded to the secondary structure in the database.
Resumo:
Long-term settlement of tunnels has caused concerns about its influence on tunnel safety and serviceability. Aiming to investigate the long-term behaviour of tunnels against the background of Shanghai metro line, two cases of centrifuge modelling were conducted, with efforts to expose the mechanism affecting the consolidation of the ground. Evenly layered ground and transitional ground strata were set for each case separately and the settlement, lining load and pore water pressure were checked against elapsed time up to 20 years. The results verified some previous findings concerning the settlement and lining load development trend, however, it was also shown that the transitional ground made the tunnel response more complicated. The research is expected to provide some basis for further research on other affecting factors, such as lining permeability. © 2010 Taylor & Francis Group, London.
Resumo:
Chapter 20 Clustering User Data for User Modelling in the GUIDE Multi-modal Set- top Box PM Langdon and P. Biswas 20.1 ... It utilises advanced user modelling and simulation in conjunction with a single layer interface that permits a ...
Resumo:
Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.
Resumo:
We review some recently published methods to represent atomic neighbourhood environments, and analyse their relative merits in terms of their faithfulness and suitability for fitting potential energy surfaces. The crucial properties that such representations (sometimes called descriptors) must have are differentiability with respect to moving the atoms, and invariance to the basic symmetries of physics: rotation, reflection, translation, and permutation of atoms of the same species. We demonstrate that certain widely used descriptors that initially look quite different are specific cases of a general approach, in which a finite set of basis functions with increasing angular wave numbers are used to expand the atomic neighbourhood density function. Using the example system of small clusters, we quantitatively show that this expansion needs to be carried to higher and higher wave numbers as the number of neighbours increases in order to obtain a faithful representation, and that variants of the descriptors converge at very different rates. We also propose an altogether new approach, called Smooth Overlap of Atomic Positions (SOAP), that sidesteps these difficulties by directly defining the similarity between any two neighbourhood environments, and show that it is still closely connected to the invariant descriptors. We test the performance of the various representations by fitting models to the potential energy surface of small silicon clusters and the bulk crystal.
Resumo:
When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques. We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations. Copyright 2012 by the author(s)/owner(s).
Resumo:
In a wind-turbine gearbox, planet bearings exhibit a high failure rate and are considered as one of the most critical components. Development of efficient vibration based fault detection methods for these bearings requires a thorough understanding of their vibration signature. Much work has been done to study the vibration properties of healthy planetary gear sets and to identify fault frequencies in fixed-axis bearings. However, vibration characteristics of planetary gear sets containing localized planet bearing defects (spalls or pits) have not been studied so far. In this paper, we propose a novel analytical model of a planetary gear set with ring gear flexibility and localized bearing defects as two key features. The model is used to simulate the vibration response of a planetary system in the presence of a defective planet bearing with faults on inner or outer raceway. The characteristic fault signature of a planetary bearing defect is determined and sources of modulation sidebands are identified. The findings from this work will be useful to improve existing sensor placement strategies and to develop more sophisticated fault detection algorithms. Copyright © 2011 by ASME.
Resumo:
The brain encodes visual information with limited precision. Contradictory evidence exists as to whether the precision with which an item is encoded depends on the number of stimuli in a display (set size). Some studies have found evidence that precision decreases with set size, but others have reported constant precision. These groups of studies differed in two ways. The studies that reported a decrease used displays with heterogeneous stimuli and tasks with a short-term memory component, while the ones that reported constancy used homogeneous stimuli and tasks that did not require short-term memory. To disentangle the effects of heterogeneity and short-memory involvement, we conducted two main experiments. In Experiment 1, stimuli were heterogeneous, and we compared a condition in which target identity was revealed before the stimulus display with one in which it was revealed afterward. In Experiment 2, target identity was fixed, and we compared heterogeneous and homogeneous distractor conditions. In both experiments, we compared an optimal-observer model in which precision is constant with set size with one in which it depends on set size. We found that precision decreases with set size when the distractors are heterogeneous, regardless of whether short-term memory is involved, but not when it is homogeneous. This suggests that heterogeneity, not short-term memory, is the critical factor. In addition, we found that precision exhibits variability across items and trials, which may partly be caused by attentional fluctuations.