990 resultados para Mexican Transition Zone
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
We introduce a set of sequential integro-difference equations to analyze the dynamics of two interacting species. Firstly, we derive the speed of the fronts when a species invades a space previously occupied by a second species, and check its validity by means of numerical random-walk simulations. As an example, we consider the Neolithic transition: the predictions of the model are consistent with the archaeological data for the front speed, provided that the interaction parameter is low enough. Secondly, an equation for the coexistence time between the invasive and the invaded populations is obtained for the first time. It agrees well with the simulations, is consistent with observations of the Neolithic transition, and makes it possible to estimate the value of the interaction parameter between the incoming and the indigenous populations
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
The No Passing Zone sign (Wl0-4) was designed in 1958 for the purpose of informing the driver contemplating a passing maneuver of hazardous sight conditions ahead. This warning sign, of pennent shape design, was placed on the left side of the road so as to be more conspicuous to the intended driver. During the two year period 1959-1960, the Wl0-4 signs were erected throughout the Iowa Primary Road System.
Resumo:
This report is compiled from data gathered by interviewing motorists to sample their opinion of Iowa's method of supplementing the yellow barrier line pavement marking of no passing zones on primary highways with yellow pennant shaped "No Passing Zone" signs mounted on the left shoulder of the highway. The effective designation of no passing zones is one form of control that can contribute to a reduction in the number of fatal high-speed head-on collisions resulting from passing in areas which do not afford sufficient sight distance of approaching traffic. It is the purpose of this report to present an evaluation of the Iowa "No Passing Zone" sign by individuals from all states who have traveled on Iowa's primary highways and who must obey the no passing zone restrictions and be warned by this sign of the presence of the zones. The "No Passing Zone" sign was formulated and approved by the Governor's Safety Committee a short time prior to the experimental erection of the signs. The Governor's Safety Committee adopted this sign as they felt that such a sign should be distinctive (not similar to any other type of sign) and easily visible to a driver attempting a passing maneuver.
Resumo:
We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.
Resumo:
To support the analysis of driver behavior at rural freeway work zone lane closure merge points, Center for Transportation Research and Education staff collected traffic data at merge areas using video image processing technology. The collection of data and the calculation of the capacity of lane closures are reported in a companion report, "Traffic Management Strategies for Merge Areas in Rural Interstate Work Zones". These data are used in the work reported in this document and are used to calibrate a microscopic simulation model of a typical, Iowa rural freeway lane closure. The model developed is a high fidelity computer simulation with an animation interface. It simulates traffic operations at a work zone lane closure. This model enables traffic engineers to visually demonstrate the forecasted delay that is likely to result when freeway reconstruction makes it necessary to close freeway lanes. Further, the model is also sensitive to variations in driver behavior and is used to test the impact of slow moving vehicles and other driver behaviors. This report consists of two parts. The first part describes the development of the work zone simulation model. The simulation analysis is calibrated and verified through data collected at a work zone in Interstate Highway 80 in Scott County, Iowa. The second part is a user's manual for the simulation model, which is provided to assist users with its set up and operation. No prior computer programming skills are required to use the simulation model.
Resumo:
The Department on Human Services (DHS) carefully considered how to transition Medicaid services to managed care while creating stability for both members and providers.
Resumo:
The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR traveltime data can allow for a significant reduction in uncertainty regarding subsurface van Genuchten-Mualem (VGM) parameters. Much of the previous work on the stochastic estimation of VGM parameters from crosshole GPR data has considered the case of steady-state infiltration conditions, which represent only a small fraction of practically relevant scenarios. We explored in detail the dynamic infiltration case, specifically examining to what extent time-lapse crosshole GPR traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify VGM parameters and their uncertainties in a layered medium, as well as the corresponding soil hydraulic properties. We used a Bayesian Markov-chain-Monte-Carlo inversion approach. We first explored the advantages and limitations of this approach with regard to a realistic synthetic example before applying it to field measurements. In our analysis, we also considered different degrees of prior information. Our findings indicate that the stochastic inversion of the time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.
Resumo:
Numerous measurements by XRD of the Scherrer width at half-peak height (001 reflection of illite), coupled with analyses of clay-size assemblages, provide evidence for strong variations in the conditions of low temperature metamorphism in the Tethyan Himalaya metasediments between the Spiti river and the Tso Morari. Three sectors can be distinguished along the Spiti river-Tso Morari transect. In the SW, the Takling and Parang La area is characterised by a metamorphism around anchizone-epizone boundary conditions. Further north, in the Dutung area, the metamorphic grade abruptly decreases to weak diagenesis, with the presence of mixed-layered clay phases. At the end of the profile towards the NE, a progressive metamorphic increase up to greenschist facies is recorded, marked by the appearance of biotite and chloritoid. The combination of these data with the structural. observations permits to propose that a nappe stack has been crosscut by the younger Dutung-Thaktote extensional fault zone (DTFZ). The change in metamorphism across this zone helps to assess the displacements which occurred during synorogenic extension. In the SW and NE parts of the studied transect, a burial of 12 km has been estimated, assuming a geothermal gradient of 25 degrees C/km. In the SW part, this burial is due to the juxtaposition of the Shikar Beh and Mata nappes and in the NE part, solely to burial beneath the Mata nappe. In the central part of the profile, the effect of the DTFZ is to bring down diagenetic sediments in-between the two aforesaid metamorphic zones. The offset along the Dutung-Thaktote normal faults is estimated at 16 km.
Resumo:
The aim of this paper was to investigate the possible connections between ammonite faunal turnover and the eustatic events recorded in Tethyan sequences during the middle Toarcian/early Bajocian time interval. For this we have analysed the biostratigraphic ranges, at the subzone level, of approximately 600 ammonite species belonging to 160 genera from several selected sections of the western Tethys (Mediterranean and Submediterranean provinces). The analysis of taxon ranges enabled us to plot curves for ammonite faunal turnovers, inter-subzonal distance, and diversity. Comparing the mentioned curves with Tethyan sequences [Hardenbol et al., 19981, we find that sea-level changes correlate well with origination and extinction events and faunal diversity. Most of the faunal turnovers correlate with stratigraphic events. Extinction events with their corresponding decrease in diversity correlate with regressive intervals and with major or minor sequence boundaries. Origination events and their corresponding increase in diversity were clearly connected with transgressions in Tethyan sequences. In several cases, the major sequence boundary and the subsequent transgressive phase correlate with major ammonite faunal turnover, whereas minor or medium sequence boundaries generally gave rise to minor or medium turnovers.
Resumo:
The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.
Resumo:
AbstractPlants continuously grow during their complete life span and understanding the mechanisms that qualitatively regulate their traits remains a challenging topic in biology. The hormone auxin has been identified as a crucial molecule for shaping plant growth, as it has a role in most developmental processes. In the root, the directional, so-called polar transport of auxin generates a peak of concentration that specifies and maintains the stem cell niche and a subsequent gradient of decreasing concentration that also regulates cell proliferation and differentiation. For these reasons, auxin is considered the main morphogen of the root, as it is fundamental for its organization and maintenance. Recently, in Arabidopsis thaliana, a natural variation screen allowed the discovery of BREVIS RADIX (BRX) gene as a limiting factor for auxin responsive gene expression and thus for root growth.In this study, we discovered that BRX is a direct target of auxin that positively feeds back on auxin signaling, as a transcriptional co-regulator, through interaction with the Auxin Response Factor (ARF) MONOPTEROS (MP), modulating the auxin gene response magnitude during the transition between division and differentiation in the root meristem. Moreover, we provide evidence that BRX is activated at the plasma membrane level as an associated protein before moving into the nucleus to modulate cellular growth.To investigate the discrepancy between the auxin concentration and the expression pattern of its downstream targets, we combined experimental and computational approaches. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and with positive auto- regulatory feedback through plasma- membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristem's division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response. RésuméLes plantes croissent continuellement tout au long de leur cycle de vie. Comprendre et expliquer les mécanismes impliqués dans ce phénomène reste à l'heure actuelle, un défi. L'hormone auxine a été identifiée comme une molécule essentielle à la régulation de la croissance des plantes, car impliquée dans la plupart des processus développementaux. Dans la racine, le transport polaire de l'auxine, par la génération d'un pic de concentration, spécifie et maintient la niche de cellules souches, et par la génération d'un gradient de concentration, contrôle la prolifération et la différentiation cellulaire. Puisque l'auxine est essentielle pour l'organisation et la maintenance du système racinaire, il est considéré comme son principal morphogène. Récemment, dans la plante modèle, Arabidopsis thalinana, un criblage des variations génétique a permis d'identifier le gène Brevis radix (BRX) comme facteur limitant l'expression des gènes de réponse à l'auxine et par là même, la croissance de la racine.Dans ce travail, nous avons découvert que BRX est une cible direct de l'auxine qui rétroactive positivement le signalement de l'hormone, agissant ainsi comme un régulateur transcriptionnel à travers l'interaction avec la protéine Monopteros (MP) de la famille des facteurs de réponse à l'auxine (Auxin Responsive Factor, ARF), et modulant ainsi la magnitude de la réponse des gènes reliés à l'auxine durant la division et la différentiation cellulaire dans le méristème de la racine. De plus, nous fournissons des preuves que BRX est activées au niveau de la membrane plasmique, tel une protéine associée se déplaçant à l'intérieur du noyau et modulant la croissance cellulaire.Pour mener à bien l'investigation des divergences entre la concentration de l'auxine et les schémas d'expression de ses propres gènes cibles, nous avons combiné les approches expérimentales et computationnelles. Les profiles d'expressions déviant du gradient d'auxine pourraient seulement être modéliser après intersection de l'activité de l'auxine avec les schémas différentiels d'endocytose observés et les boucles de rétroaction positives et autorégulatrices par le transfert de BRX de la membrane plasmique au noyau. Puisque BRX est requis pour l'expression de certains gènes cibles des facteurs de réponse à l'auxine, nos données suggèrent une contribution dépendante d'une endocytose spécifique au type de cellule dans la perception transcriptionnelle à l'auxine Cette contribution soutient l'expression d'un sous-set de gène de réponse à l'auxine dans la division du méristème racinaire et la zone de transition, et par conséquent, est essentielle pour la croissance méristematique. Ainsi, le schéma d'endocytose fournit des informations positionnelles spécifiques à la modulation de la réponse à l'auxine.