993 resultados para Metal bonding.
Resumo:
The participation of a nitrogen atom acting as an electrophile in pnicogen bonding, a hitherto unexplored interaction has been established by experimental charge density analysis. QTAIM and NBO analyses ratify this observation.
Resumo:
Copper(II) and copper(I) complexes of a newly designed and crystallographically characterized Schiff base (HL) derived from rhodamine hydrazide and cinnamaldehyde were isolated in pure form formulated as Cu(L)(NO3)] (L-Cu) (1) and Cu(HL)(CH3CN)(H2O)]ClO4 (HL-Cu) (2), and characterized by physicochemical and spectroscopic tools. Interestingly, complex 1 but not 2 offers red fluorescence in solution state, and eventually HL behaves as a Cu(II) ions selective FRET based fluorosensor in HEPES buffer (1 mM, acetonitrile-water: 1/5, v/v) at 25 degrees C at biological pH with almost no interference of other competitive ions. The dependency of the FRET process on the +2 oxidation state of copper has been nicely supported by exhaustive experimental studies comprising electronic, fluorimetric, NMR titration, and theoretical calculations. The sensing ability of HL has been evaluated by the LOD value towards Cu(II) ions (83.7 nM) and short responsive time (5-10 s). Even the discrimination of copper(I) and copper(II) has also been done using only UV-Vis spectroscopic study. The efficacy of this bio-friendly probe has been determined by employing HL to detect the intercellular distribution of Cu(II) ions in HeLa cells by developing image under fluorescence microscope.
Resumo:
Conventional solids are prepared from building blocks that are conceptually no larger than a hundred atoms. While van der Waals and dipole-dipole interactions also influence the formation of these materials, stronger interactions, referred to as chemical bonds, play a more decisive role in determining the structures of most solids. Chemical bonds that hold such materials together are said to be ionic, covalent, metallic, dative, or otherwise a combination of these. Solids that utilize semiconductor nanocrystal quantum dots as building units have been demonstrated to exist; however, the interparticle forces in such materials are decidedly not chemical. Here we demonstrate the formation of charge transfer states in a binary quantum dot mixture. Charge is observed to reside in quantum confined states of one of the participating quantum dots. These interactions lead to materials that may be regarded as the nanoscale analog of an ionic solid. The process by which these materials form has interesting parallels to chemical reactions in conventional chemistry.
Resumo:
The study of models for ``metal-enzyme-substrate'' interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {Cu(phen)(mu-ura)(H2O)](n)center dot H2O (1a)} and {Cu(phen)(mu-ura)(H2O)](n)center dot CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The two-step particle synthesis mechanism, also known as the Finke-Watzky (1997) mechanism, has emerged as a significant development in the field of nanoparticle synthesis. It explains a characteristic feature of the synthesis of transition metal nanoparticles, an induction period in precursor concentration followed by its rapid sigmoidal decrease. The classical LaMer theory (1950) of particle formation fails to capture this behavior. The two-step mechanism considers slow continuous nucleation and autocatalytic growth of particles directly from precursor as its two kinetic steps. In the present work, we test the two-step mechanism rigorously using population balance models. We find that it explains precursor consumption very well, but fails to explain particle synthesis. The effect of continued nucleation on particle synthesis is not suppressed sufficiently by the rapid autocatalytic growth of particles. The nucleation continues to increase breadth of size distributions to unexpectedly large values as compared to those observed experimentally. A number of variations of the original mechanism with additional reaction steps are investigated next. The simulations show that continued nucleation from the beginning of the synthesis leads to formation of highly polydisperse particles in all of the tested cases. A short nucleation window, realized with delayed onset of nucleation and its suppression soon after in one of the variations, appears as one way to explain all of the known experimental observations. The present investigations clearly establish the need to revisit the two-step particle synthesis mechanism.
Resumo:
Metal-organic frameworks (MOFs) and boron nitride both possess novel properties, the former associated with microporosity and the latter with good mechanical properties. We have synthesized composites of the imidazolate based MOF, ZIF-8, and few-layer BN in order to see whether we can incorporate the properties of both these materials in the composites. The composites so prepared between BN nanosheets and ZIF-8 have compositions ZIF-1BN, ZIF-2BN, ZIF-3BN and similar to ZIF-4BN. The composites have been characterized by PXRD, TGA, XPS, electron microscopy, IR, Raman and solid state NMR spectroscopy. The composites possess good surface areas, the actual value decreasing only slightly with the increase in the BN content. The CO2 uptake remains nearly the same in the composites as in the parent ZIF-8. More importantly, the addition of BN markedly improves the mechanical properties of ZIF-8, a feature that is much desired in MOFs. Observation of microporous features along with improved mechanical properties in a MOF is indeed noteworthy. Such manipulation of properties can be profitably exploited in practical applications.
Resumo:
In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.
Resumo:
The type1 iodothyronine deiodinase (1D-1) in liver and kidney converts the L-thyroxine (T4), a prohormone, by outer-ring (5) deiodination to biologically active 3,3,5-triiodothyronine (T3) or by inner-ring (5) deiodination to inactive 3,3,5-triiodothronine (rT3). Sulfate conjugation is an important step in the irreversible inactivation of thyroid hormones. While sulfate conjugation of the phenolic hydroxyl group stimulates the 5-deiodination of T4 and T3, it blocks the 5-deiodination of T4. We show that thyroxine sulfate (T4S) undergoes faster deiodination as compared to the parent thyroid hormone T4 by synthetic selenium compounds. It is also shown that ID-3 mimics, which are remarkably selective to the inner-ring deiodination of T4 and T3, changes the selectivity completely when T4S is used as a substrate. From the theoretical investigations, it is observed that the strength of halogen bonding increases upon sulfate conjugation, which leads to a change in the regioselectivity of ID-3 mimics towards the deiodination of T4S. It has been shown that these mimics perform both the 5- and 5-ring deiodinations by an identical mechanism.
Resumo:
The performance of metal hydride based solid sorption cooling systems depends on the driving pressure differential, and the rate of hydrogen transfer between coupled metal hydride beds during cooling and regeneration processes. Conventionally, the mid-plateau pressure difference obtained from `static' equilibrium PCT data are used for the thermodynamic analysis. It is well known that the processes are `dynamic' because the pressure and temperature, and hence the concentration of the hydride beds, are continuously changing. Keeping this in mind, the pair of La0.9Ce0.1Ni5 - LaNi4.7Al0.3 metal hydrides suitable for solid sorption cooling systems were characterised using both static and dynamic methods. It was found that the PCT characteristics, and the resulting enthalpy (Delta H) and entropy (Delta S) values, were significantly different for static and dynamic modes of measurements. In the present study, the solid sorption metal hydride cooling system is analysed taking in to account the actual variation in the pressure difference (Delta P) and the dynamic enthalpy values. Compared to `static' property based analysis, significant decrease in the driving potentials and transferrable amounts of hydrogen, leading to decrease in cooling capacity by 57.8% and coefficient of performance by 31.9% are observed when dynamic PCT data at the flow rate of 80 ml/min are considered. Copyright 2014 (C) Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Phosphorene, a two-dimensional analog of black phosphorous, has been a subject of immense interest recently, due to its high carrier mobilities and a tunable bandgap. So far, tunability has been predicted to be obtained with very high compressive/tensile in-plane strains, and vertical electric field, which are difficult to achieve experimentally. Here, we show using density functional theory based calculations the possibility of tuning electronic properties by applying normal compressive strain in bilayer phosphorene. A complete and fully reversible semiconductor to metal transition has been observed at similar to 13.35% strain, which can be easily realized experimentally. Furthermore, a direct to indirect bandgap transition has also been observed at similar to 3% strain, which is a signature of unique band-gap modulation pattern in this material. The absence of negative frequencies in phonon spectra as a function of strain demonstrates the structural integrity of the sheets at relatively higher strain range. The carrier mobilities and effective masses also do not change significantly as a function of strain, keeping the transport properties nearly unchanged. This inherent ease of tunability of electronic properties without affecting the excellent transport properties of phosphorene sheets is expected to pave way for further fundamental research leading to phosphorene-based multi-physics devices.
Resumo:
The problem associated with metal nanoparticle (NP) agglomeration when trying to achieve a high loading amount has been solved by a new method of functionalization of MOFs' pores with terminal alkyne moieties. The alkynophilicity of the Au3+ ions has been utilized successfully for an exceptionally high loading (similar to 50 wt%) of Au-NPs on supported functionalized MOFs.
Resumo:
A silver ion (Ag+)-triggered thixotropic metallo(organo)gel of p-pyridyl-appended oligo(p-phenylenevinylene) derivatives (OPVs) is reported for the first time. Solubilization of single-walled carbon nanohorns (SWCNHs) in solutions of the pure OPVs as well as in the metallogels mediated by pi-pi interactions has also been achieved. In situ fabrication of silver nanoparticles (AgNPs) in the SWCNH-doped dihybrid gel leads to the formation of a trihybrid metallogel. The mechanical strength of the metallogels could be increased step- wise in the order: freshly prepared gel
Resumo:
The self-assembly of p-pyridyl-ended oligo-p-phenylenevinylenes (OPVs) in ethanol leads to the formation of either hollow or solid microrods. The corresponding protonated OPVs with n-butyl chains induce transparent gelation and also gel phase crystallization owing to various synergistic noncovalent interactions. The chloride ion-selective gelation, AIEE and stimuli responsiveness of the gel are also observed.
Resumo:
Longitudinal relaxation due to cross-correlation between dipolar ((HN-1H alpha)-H-1) and amide-proton chemical shift anisotropy (H-1(N) CSA) has been measured in a model tripeptide Piv-(L)Pro-(L)Pro-(L)Phe-OMe. The peptide bond across diproline segment is known to undergo cis/trans isomerization and only in the cis form does the lone Phe amide-proton become involved in intramolecular hydrogen bonding. The strength of the cross correlated relaxation interference is found to be significantly different between cis and trans forms, and this difference is shown as an influence of intramolecular hydrogen bonding on the amide-proton CSA. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The five-coordinated 16-electron complex Ru(Me)(dppe)(2)]OTf] (3) undergoes methane elimination at room temperature to afford the ortho-metalated species (dppe){(C6H5)(C6H4)PCH2CH2P(C6H5)(2)}Ru]OTf] (7). Methane elimination, monitored using NMR spectroscopy, revealed no intermediate throughout the reaction. The NOE between Ru-Me protons and ortho phenyl protons and an agostic interaction trans to the methyl group were found in complex 3 by NMR spectroscopy, which form the basis for three plausible pathways for methane elimination and ortho metalation: pathway I (through spatial interaction), pathway II (through oxidative addition and reductive elimination), and pathway III (through agostic interaction). Methane elimination from complex 3 via pathway I was discounted, since it involves interactions through space and not through bonds. Moreover, the calculated energy barrier for the pathway I transition state was quite high (71.3 kcal/mol), which also indicates that this pathway is very unlikely. Furthermore, no spectroscopic evidence for oxidatively added seven-coordinated Ru(IV) species was found and the computed energy barrier of the transition state for pathway II was moderately high (41.1 kcal/mol), which suggests that this cannot be the right pathway for methane elimination and ortho-metalation of complex 3. On the other hand, indirect evidence in the form of chemical reactions point to the most plausible pathway for methane elimination, pathway III, via the intermediacy of a sigma-CH4 complex that could not be found spectroscopically. DFT calculations at several levels on this pathway showed an initial low-barrier rearrangement through TS1 to a square-pyramidal intermediate wherein methyl and agostic C-H are cis to each other. Migration of hydrogen from agostic C-H and elimination of methane proceed through the transition state TS2, which retains a weak metal-H bonding through most parts of the reaction coordinate. Upon comparison of all three pathways, pathway III was found to be the most likely for methane elimination and ortho-metalation of complex 3.