1000 resultados para McGill Model
Resumo:
Significant attention has been given in urban policy literature to the integration of land-use and transport planning and policies—with a view to curbing sprawling urban form and diminishing externalities associated with car-dependent travel patterns. By taking land-use and transport interaction into account, this debate mainly focuses on how a successful integration can contribute to societal well-being, providing efficient and balanced economic growth while accomplishing the goal of developing sustainable urban environments and communities. The integration is also a focal theme of contemporary urban development models, such as smart growth, liveable neighbourhoods, and new urbanism. Even though available planning policy options for ameliorating urban form and transport-related externalities have matured—owing to growing research and practice worldwide—there remains a lack of suitable evaluation models to reflect on the current status of urban form and travel problems or on the success of implemented integration policies. In this study we explore the applicability of indicator-based spatial indexing to assess land-use and transport integration at the neighbourhood level. For this, a spatial index is developed by a number of indicators compiled from international studies and trialled in Gold Coast, Queensland, Australia. The results of this modelling study reveal that it is possible to propose an effective metric to determine the success level of city plans considering their sustainability performance via composite indicator methodology. The model proved useful in demarcating areas where planning intervention is applicable, and in identifying the most suitable locations for future urban development and plan amendments. Lastly, we integrate variance-based sensitivity analysis with the spatial indexing method, and discuss the applicability of the model in other urban contexts.
Resumo:
We construct an efficient identity based encryption system based on the standard learning with errors (LWE) problem. Our security proof holds in the standard model. The key step in the construction is a family of lattices for which there are two distinct trapdoors for finding short vectors. One trapdoor enables the real system to generate short vectors in all lattices in the family. The other trapdoor enables the simulator to generate short vectors for all lattices in the family except for one. We extend this basic technique to an adaptively-secure IBE and a Hierarchical IBE.
Resumo:
Social tagging systems are shown to evidence a well known cognitive heuristic, the guppy effect, which arises from the combination of different concepts. We present some empirical evidence of this effect, drawn from a popular social tagging Web service. The guppy effect is then described using a quantum inspired formalism that has been already successfully applied to model conjunction fallacy and probability judgement errors. Key to the formalism is the concept of interference, which is able to capture and quantify the strength of the guppy effect.
Resumo:
The notion of certificateless public-key encryption (CL-PKE) was introduced by Al-Riyami and Paterson in 2003 that avoids the drawbacks of both traditional PKI-based public-key encryption (i.e., establishing public-key infrastructure) and identity-based encryption (i.e., key escrow). So CL-PKE like identity-based encryption is certificate-free, and unlike identity-based encryption is key escrow-free. In this paper, we introduce simple and efficient CCA-secure CL-PKE based on (hierarchical) identity-based encryption. Our construction has both theoretical and practical interests. First, our generic transformation gives a new way of constructing CCA-secure CL-PKE. Second, instantiating our transformation using lattice-based primitives results in a more efficient CCA-secure CL-PKE than its counterpart introduced by Dent in 2008.
Resumo:
An encryption scheme is non-malleable if giving an encryption of a message to an adversary does not increase its chances of producing an encryption of a related message (under a given public key). Fischlin introduced a stronger notion, known as complete non-malleability, which requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti later proposed a comparison-based definition of this security notion, which is more in line with the well-studied definitions proposed by Bellare et al. The authors also provide additional feasibility results by proposing two constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Therefore, the only previously known completely non-malleable (and non-interactive) scheme in the standard model, is quite inefficient as it relies on generic NIZK approach. They left the existence of efficient schemes in the common reference string model as an open problem. Recently, two efficient public-key encryption schemes have been proposed by Libert and Yung, and Barbosa and Farshim, both of them are based on pairing identity-based encryption. At ACISP 2011, Sepahi et al. proposed a method to achieve completely non-malleable encryption in the public-key setting using lattices but there is no security proof for the proposed scheme. In this paper we review the mentioned scheme and provide its security proof in the standard model. Our study shows that Sepahi’s scheme will remain secure even for post-quantum world since there are currently no known quantum algorithms for solving lattice problems that perform significantly better than the best known classical (i.e., non-quantum) algorithms.
Resumo:
Numeric set watermarking is a way to provide ownership proof for numerical data. Numerical data can be considered to be primitives for multimedia types such as images and videos since they are organized forms of numeric information. Thereby, the capability to watermark numerical data directly implies the capability to watermark multimedia objects and discourage information theft on social networking sites and the Internet in general. Unfortunately, there has been very limited research done in the field of numeric set watermarking due to underlying limitations in terms of number of items in the set and LSBs in each item available for watermarking. In 2009, Gupta et al. proposed a numeric set watermarking model that embeds watermark bits in the items of the set based on a hash value of the items’ most significant bits (MSBs). If an item is chosen for watermarking, a watermark bit is embedded in the least significant bits, and the replaced bit is inserted in the fractional value to provide reversibility. The authors show their scheme to be resilient against the traditional subset addition, deletion, and modification attacks as well as secondary watermarking attacks. In this paper, we present a bucket attack on this watermarking model. The attack consists of creating buckets of items with the same MSBs and determine if the items of the bucket carry watermark bits. Experimental results show that the bucket attack is very strong and destroys the entire watermark with close to 100% success rate. We examine the inherent weaknesses in the watermarking model of Gupta et al. that leave it vulnerable to the bucket attack and propose potential safeguards that can provide resilience against this attack.
Resumo:
This thesis presents novel techniques for addressing the problems of continuous change and inconsistencies in large process model collections. The developed techniques treat process models as a collection of fragments and facilitate version control, standardization and automated process model discovery using fragment-based concepts. Experimental results show that the presented techniques are beneficial in consolidating large process model collections, specifically when there is a high degree of redundancy.
Resumo:
This presentation addresses issues related to leadership, academic development and scholarship of teaching and learning, and highlights research funded by the Australian Office of Learning and Teaching (OLT) designed to embed and sustain peer review of teaching within the culture of 5 Australian universities: Queensland University of Technology, University of Technology, Sydney, University of Adelaide, Curtin University, and Charles Darwin University. Peer review of teaching in higher education will be emphasised as a professional process for providing feedback on teaching and learning practice, which if sustained, can become an effective ongoing strategy for academic development (Barnard et al, 2011; Bell, 2005; Bolt and Atkinson, 2010; McGill & Beaty 2001, 1992; Kemmis & McTaggart, 2000). The research affirms that using developmental peer review models (Barnard et al, 2011; D'Andrea, 2002; Hammersley-Fletcher & Orsmond, 2004) can bring about successful implementation, especially when implemented within a distributive leadership framework (Spillane & Healey, 2010). The project’s aims and objectives were to develop leadership capacity and integrate peer review as a cultural practice in higher education. The research design was a two stage inquiry process over 2 years. The project began in July 2011 and encompassed a development and pilot phase followed by a cascade phase with questionnaire and focus group evaluation processes to support ongoing improvement and measures of outcome. Leadership development activities included locally delivered workshops complemented by the identification and support of champions. To optimise long term sustainability, the project was implemented through existing learning and teaching structures and processes within the respective partner universities. Research outcomes highlight the fundamentals of peer review of teaching and the broader contextual elements of integration, leadership and development, expressed as a conceptual model for embedding peer review of teaching within higher education. The research opens a communicative space about introduction of peer review that goes further than simply espousing its worth and introduction. The conceptual model highlights the importance of development of distributive leadership capacity, integration of policies and processes, and understanding the values, beliefs, assumptions and behaviors embedded in an organizational culture. The presentation overviews empirical findings that demonstrate progress to advance peer review requires an ‘across-the-board’ commitment to embed change, and inherently demands a process that co-creates connection across colleagues, discipline groups, and the university sector. Progress toward peer review of teaching as a cultural phenomenon can be achieved and has advantages for academic staff, scholarship, teaching evaluation and an organisation, if attention is given to strategies that influence the contexts and cultures of teaching practice. Peer review as a strategy to develop excellence in teaching is considered from a holistic perspective that by necessity encompasses all elements of an educational environment and has a focus on scholarship of teaching. The work is ongoing and has implication for policy, research, teaching development and student outcomes, and has potential application world-wide.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
Creative Development: The Body and Light. Within the current cultural climate, the independent choreographer struggles to pursue and establish their artistic career outside the infrastructure of mainstream dance companies. The independent choreographer is challenged to articulate alternative choreographic models without the support of that infrastructure. My research examines that challenge by exploring my own independent choreographic practice through a number of performance-based dance projects. This exploration will be underpinned by theoretical research to enable clarification of the tacit understandings of an embodied practice and the point of intersection between practice and theory so as to articulate alternative choreographic models. As a starting point for that enquiry, an example is provided of how questions that emerge from within the choreographic practice can be discussed in terms of research through an initial investigation exploring light in relation to the moving body and the implications of atmospheres.
Resumo:
Parabolic trough concentrator collector is the most matured, proven and widespread technology for the exploitation of the solar energy on a large scale for middle temperature applications. The assessment of the opportunities and the possibilities of the collector system are relied on its optical performance. A reliable Monte Carlo ray tracing model of a parabolic trough collector is developed by using Zemax software. The optical performance of an ideal collector depends on the solar spectral distribution and the sunshape, and the spectral selectivity of the associated components. Therefore, each step of the model, including the spectral distribution of the solar energy, trough reflectance, glazing anti-reflection coating and the absorber selective coating is explained and verified. Radiation flux distribution around the receiver, and the optical efficiency are two basic aspects of optical simulation are calculated using the model, and verified with widely accepted analytical profile and measured values respectively. Reasonably very good agreement is obtained. Further investigations are carried out to analyse the characteristics of radiation distribution around the receiver tube at different insolation, envelop conditions, and selective coating on the receiver; and the impact of scattered light from the receiver surface on the efficiency. However, the model has the capability to analyse the optical performance at variable sunshape, tracking error, collector imperfections including absorber misalignment with focal line and de-focal effect of the absorber, different rim angles, and geometric concentrations. The current optical model can play a significant role in understanding the optical aspects of a trough collector, and can be employed to extract useful information on the optical performance. In the long run, this optical model will pave the way for the construction of low cost standalone photovoltaic and thermal hybrid collector in Australia for small scale domestic hot water and electricity production.
Resumo:
NTRUEncrypt is a fast and practical lattice-based public-key encryption scheme, which has been standardized by IEEE, but until recently, its security analysis relied only on heuristic arguments. Recently, Stehlé and Steinfeld showed that a slight variant (that we call pNE) could be proven to be secure under chosen-plaintext attack (IND-CPA), assuming the hardness of worst-case problems in ideal lattices. We present a variant of pNE called NTRUCCA, that is IND-CCA2 secure in the standard model assuming the hardness of worst-case problems in ideal lattices, and only incurs a constant factor overhead in ciphertext and key length over the pNE scheme. To our knowledge, our result gives the first IND-CCA2 secure variant of NTRUEncrypt in the standard model, based on standard cryptographic assumptions. As an intermediate step, we present a construction for an All-But-One (ABO) lossy trapdoor function from pNE, which may be of independent interest. Our scheme uses the lossy trapdoor function framework of Peikert and Waters, which we generalize to the case of (k − 1)-of-k-correlated input distributions.
Resumo:
Responding to the global and unprecedented challenge of capacity building for twenty-first century life, this book is a practical guide for tertiary education institutions to quickly and effectively renew the curriculum towards education for sustainable development. The book begins by exploring why curriculum change has been so slow. It then describes a model for rapid curriculum renewal, highlighting the important roles of setting timeframes, formal and informal leadership, and key components and action strategies. The second part of the book provides detailed coverage of six core elements that have been trialled and peer reviewed by institutions around the world: - raising awareness among staff and students - mapping graduate attributes - auditing the curriculum - developing niche degrees, flagship courses and fully integrated programs - engaging and catalysing community and student markets - integrating curriculum with green campus operations. With input from more than seventy academics and grounded in engineering education experiences, this book will provide academic staff with tools and insights to rapidly align program offerings with the needs of present and future generations of students.
Resumo:
This multidisciplinary research advanced the current understanding of self-regulation – a critical component in safe and sustainable mobility for older adults. It investigates the sociodemographic and psychosocial factors that underlies older adults' self-regulation, and examines their travel behaviours using a combination of self-report, in-vehicle and wearable devices. This research developed a novel theoretical model that significantly predicts self-regulation and objectively driving behaviours among older drivers.
Resumo:
The basic reproduction number of a pathogen, R 0, determines whether a pathogen will spread (R0>1R 0>1), when introduced into a fully susceptible population or fade out (R0<1R 0<1), because infected hosts do not, on average, replace themselves. In this paper we develop a simple mechanistic model for the basic reproduction number for a group of tick-borne pathogens that wholly, or almost wholly, depend on horizontal transmission to and from vertebrate hosts. This group includes the causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of human babesiosis, Babesia microti, for which transmission between co-feeding ticks and vertical transmission from adult female ticks are both negligible. The model has only 19 parameters, all of which have a clear biological interpretation and can be estimated from laboratory or field data. The model takes into account the transmission efficiency from the vertebrate host as a function of the days since infection, in part because of the potential for this dynamic to interact with tick phenology, which is also included in the model. This sets the model apart from previous, similar models for R0 for tick-borne pathogens. We then define parameter ranges for the 19 parameters using estimates from the literature, as well as laboratory and field data, and perform a global sensitivity analysis of the model. This enables us to rank the importance of the parameters in terms of their contribution to the observed variation in R0. We conclude that the transmission efficiency from the vertebrate host to Ixodes scapularis ticks, the survival rate of Ixodes scapularis from fed larva to feeding nymph, and the fraction of nymphs finding a competent host, are the most influential factors for R0. This contrasts with other vector borne pathogens where it is usually the abundance of the vector or host, or the vector-to-host ratio, that determine conditions for emergence. These results are a step towards a better understanding of the geographical expansion of currently emerging horizontally transmitted tick-borne pathogens such as Babesia microti, as well as providing a firmer scientific basis for targeted use of acaricide or the application of wildlife vaccines that are currently in development.