969 resultados para Maximum output powers
Resumo:
Because of the importance and potential usefulness of construction market statistics to firms and government, consistency between different sources of data is examined with a view to building a predictive model of construction output using construction data alone. However, a comparison of Department of Trade and Industry (DTI) and Office for National Statistics (ONS) series shows that the correlation coefcient (used as a measure of consistency) of the DTI output and DTI orders data and the correlation coefficient of the DTI output and ONS output data are low. It is not possible to derive a predictive model of DTI output based on DTI orders data alone. The question arises whether or not an alternative independent source of data may be used to predict DTI output data. Independent data produced by Emap Glenigan (EG), based on planning applications, potentially offers such a source of information. The EG data records the value of planning applications and their planned start and finish dates. However, as this data is ex ante and is not correlated with DTI output it is not possible to use this data to describe the volume of actual construction output. Nor is it possible to use the EG planning data to predict DTI construc-tion orders data. Further consideration of the issues raised reveal that it is not practically possible to develop a consistent predictive model of construction output using construction statistics gathered at different stages in the development process.
Resumo:
Climate change is one of the major challenges facing economic systems at the start of the 21st century. Reducing greenhouse gas emissions will require both restructuring the energy supply system (production) and addressing the efficiency and sufficiency of the social uses of energy (consumption). The energy production system is a complicated supply network of interlinked sectors with 'knock-on' effects throughout the economy. End use energy consumption is governed by complex sets of interdependent cultural, social, psychological and economic variables driven by shifts in consumer preference and technological development trajectories. To date, few models have been developed for exploring alternative joint energy production-consumption systems. The aim of this work is to propose one such model. This is achieved in a methodologically coherent manner through integration of qualitative input-output models of production, with Bayesian belief network models of consumption, at point of final demand. The resulting integrated framework can be applied either (relatively) quickly and qualitatively to explore alternative energy scenarios, or as a fully developed quantitative model to derive or assess specific energy policy options. The qualitative applications are explored here.
Resumo:
In immediate recall tasks, visual recency is substantially enhanced when output interference is low (Cowan, Saults, Elliott, & Moreno, 2002; Craik, 1969) whereas auditory recency remains high even under conditions of high output interference. Ibis auditory advantage has been interpreted in terms of auditory resistance to output interference (e.g., Neath & Surprenant, 2003). In this study the auditory-visual difference at low output interference re-emerged when ceiling effects were accounted for, but only with spoken output. With written responding the auditory advantage remained significantly larger with high than with low output interference. These new data suggest that both superior auditory encoding and modality-specific output interference contribute to the classic auditory-visual modality effect.
Resumo:
Objectives: To identify the extent of dual task interference between cognitive and motor tasks, (cognitive motor interference (CMI)) in sitting balance during recovery from stroke; to compare CMI in sitting balance between stroke and non-stroke groups; and to record any changes to CMI during sitting that correlate with functional recovery. Method: 36 patients from stroke rehabilitation settings in three NHS trusts. Healthy control group: 21 older volunteers. Measures of seated postural sway were taken in unsupported sitting positions, alone, or concurrently with either a repetitive utterance task or an oral word category generation task. Outcome measures were variability of sway area, path length of sway, and the number of valid words generated. Results: Stroke patients were generally less stable than controls during unsupported sitting tasks. They showed greater sway during repetitive speech compared with quiet sitting, but did not show increased instability to posture between repetitive speech and word category generation. When compared with controls, stroke patients experienced greater dual task interferences during repetitive utterance but not during word generation. Sway during repetitive speech was negatively correlated with concurrent function on the Barthel ADL index. Conclusions: The stroke patients showed postural instability and poor word generation skills. The results of this study show that the effort of verbal utterances alone was sufficient to disturb postural control early after stroke, and the extent of this instability correlated with concomitant Barthel ADL function.
Resumo:
'Maximum Available Feedback' is Bode's term for the highest possible loop gain over a given bandwidth, with specified stability margins, in a single loop feedback system. His work using asymptotic analysis allowed Bode to develop a methodology for achieving this. However, the actual system performance differs from that specified, due to the use of asymptotic approximations, and the author[2] has described how, for instance, the actual phase margin is often much lower than required when the bandwidth is high, and proposed novel modifications to the asymptotes to address the issue. This paper gives some new analysis of such systems, showing that the method also contravenes Bode's definition of phase margin, and shows how the author's modifications can be used for different amounts of bandwidth.
Resumo:
In this paper we present error analysis for a Monte Carlo algorithm for evaluating bilinear forms of matrix powers. An almost Optimal Monte Carlo (MAO) algorithm for solving this problem is formulated. Results for the structure of the probability error are presented and the construction of robust and interpolation Monte Carlo algorithms are discussed. Results are presented comparing the performance of the Monte Carlo algorithm with that of a corresponding deterministic algorithm. The two algorithms are tested on a well balanced matrix and then the effects of perturbing this matrix, by small and large amounts, is studied.
Resumo:
In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.
Resumo:
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Resumo:
Bode's method for obtaining 'maximum obtainable feedback' is a good example of a nontrivial feedback system design technique, but it is largely overlooked. This paper shows how the associated mathematics can be simplified and linear elements used in its implementation, so as to make it accessible for teaching to undergraduates.