958 resultados para Management|Environmental management|Civil engineering
Resumo:
An integrated reservoir operation model is presented for developing effective operational policies for irrigation water management. In arid and semi-arid climates, owing to dynamic changes in the hydroclimatic conditions within a season, the fixed cropping pattern with conventional operating policies, may have considerable impact on the performance of the irrigation system and may affect the economics of the farming community. For optimal allocation of irrigation water in a season, development of effective mathematical models may guide the water managers in proper decision making and consequently help in reducing the adverse effects of water shortage and crop failure problems. This paper presents a multi-objective integrated reservoir operation model for multi-crop irrigation system. To solve the multi-objective model, a recent swarm intelligence technique, namely elitist-mutated multi-objective particle swarm optimisation (EM-MOPSO) has been used and applied to a case study in India. The method evolves effective strategies for irrigation crop planning and operation policies for a reservoir system, and thereby helps farming community in improving crop benefits and water resource usage in the reservoir command area.
Resumo:
We conducted surveys of fire and fuels managers at local, regional, and national levels to gain insights into decision processes and information flows in wildfire management. Survey results in the form of fire managers’ decision calendars show how climate information needs vary seasonally, over space, and through the organizational network, and help determine optimal points for introducing climate information and forecasts into decision processes. We identified opportunities to use climate information in fire management, including seasonal to interannual climate forecasts at all organizational levels, to improve the targeting of fuels treatments and prescribed burns, the positioning and movement of initial attack resources, and staffing and budgeting decisions. Longer-term (5–10 years) outlooks also could be useful at the national level in setting budget and research priorities. We discuss these opportunities and examine the kinds of organizational changes that could facilitate effective use of existing climate information and climate forecast capabilities.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
This paper shows how multidisciplinary research can help policy makers develop policies for sustainable agricultural water management interventions by supporting a dialogue between government departments that are in charge of different aspects of agricultural development. In the Jaldhaka Basin in West Bengal, India, a stakeholder dialogue helped identify potential water resource impacts and livelihood implications of an agricultural water management rural electrification scenario. Hydrologic modelling demonstrated that the expansion of irrigation is possible with only a localized effect on groundwater levels, but cascading effects such as declining soil fertility and negative impacts from agrochemicals will need to be addressed.
Resumo:
Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.
Resumo:
The component and system reliability based design of bridge abutments under earthquake loading is presented in the paper. Planar failure surface has been used in conjunction with pseudo-dynamic approach to compute seismic active earth pressures on an abutment. The pseudo-dynamic method, considers the effect of phase difference in shear waves, soil amplification along with the horizontal seismic accelerations, strain localization in backfill soil and associated post-peak reduction in the shear resistance from peak to residual values along a previously formed failure plane. Four modes of stability viz. sliding, overturning, eccentricity and bearing capacity of the foundation soil are considered in the analysis. The series system reliability is computed with an assumption of independent failure modes. The lower and upper bounds of system reliability are also computed by taking into account the correlations between four failure modes, which is evaluated using the direction cosines of the tangent planes at the most probable points of failure.
Resumo:
The stability of a bioreactor landfill slope is influenced by the quantity and method of leachate recirculation as well as on the degree of decomposition. Other factors include properties variation of waste material and geometrical configurations, i.e., height and slope of landfills. Conventionally, the stability of slopes is evaluated using factor of safety approach, in which the variability in the engineering properties of MSW is not considered directly and stability issues are resolved from past experiences and good engineering judgments. On the other hand, probabilistic approach considers variability in mathematical framework and provides stability in a rational manner that helps in decision making. The objective of the present study is to perform a parametric study on the stability of a bioreactor landfill slope in probabilistic framework considering important influencing factors, such as, variation in MSW properties, amount of leachate recirculation, and age of degradation, in a systematic manner. The results are discussed in the light of existing relevant regulations, design and operation issues.
Resumo:
This study presents an overview of seismic microzonation and existing methodologies with a newly proposed methodology covering all aspects. Earlier seismic microzonation methods focused on parameters that affect the structure or foundation related problems. But seismic microzonation has generally been recognized as an important component of urban planning and disaster management. So seismic microzonation should evaluate all possible hazards due to earthquake and represent the same by spatial distribution. This paper presents a new methodology for seismic microzonation which has been generated based on location of study area and possible associated hazards. This new method consists of seven important steps with defined output for each step and these steps are linked with each other. Addressing one step and respective result may not be seismic microzonation, which is practiced widely. This paper also presents importance of geotechnical aspects in seismic microzonation and how geotechnical aspects affect the final map. For the case study, seismic hazard values at rock level are estimated considering the seismotectonic parameters of the region using deterministic and probabilistic seismic hazard analysis. Surface level hazard values are estimated considering site specific study and local site effects based on site classification/characterization. The liquefaction hazard is estimated using standard penetration test data. These hazard parameters are integrated in Geographical Information System (GIS) using Analytic Hierarchy Process (AHP) and used to estimate hazard index. Hazard index is arrived by following a multi-criteria evaluation technique - AHP, in which each theme and features have been assigned weights and then ranked respectively according to a consensus opinion about their relative significance to the seismic hazard. The hazard values are integrated through spatial union to obtain the deterministic microzonation map and probabilistic microzonation map for a specific return period. Seismological parameters are widely used for microzonation rather than geotechnical parameters. But studies show that the hazard index values are based on site specific geotechnical parameters.
Resumo:
Two multicriterion decision-making methods, namely `compromise programming' and the `technique for order preference by similarity to an ideal solution' are employed to prioritise 22 micro-catchments (A1 to A22) of Kherthal catchment, Rajasthan, India and comparative analysis is performed using the compound parameter approach. Seven criteria - drainage density, bifurcation ratio, stream frequency, form factor, elongation ratio, circulatory ratio and texture ratio - are chosen for the evaluation. The entropy method is employed to estimate weights or relative importance of the criterion which ultimately affects the ranking pattern or prioritisation of micro-catchments. Spearman rank correlation coefficients are estimated to measure the extent to which the ranks obtained are correlated. Based on the average ranking approach supported by sensitivity analysis, micro-catchments A6, A10, A3 are preferred (owing to their low ranking) for further improvements with suitable conservation and management practices, and other micro-catchments can be processed accordingly at a later phase on a priority basis. It is concluded that the present approach can be explored for other similar situations with appropriate modifications.
Resumo:
With the introduction of the earth observing satellites, remote sensing has become an important tool in analyzing the Earth's surface characteristics, and hence in supplying valuable information necessary for the hydrologic analysis. Due to their capability to capture the spatial variations in the hydro-meteorological variables and frequent temporal resolution sufficient to represent the dynamics of the hydrologic processes, remote sensing techniques have significantly changed the water resources assessment and management methodologies. Remote sensing techniques have been widely used to delineate the surface water bodies, estimate meteorological variables like temperature and precipitation, estimate hydrological state variables like soil moisture and land surface characteristics, and to estimate fluxes such as evapotranspiration. Today, near-real time monitoring of flood, drought events, and irrigation management are possible with the help of high resolution satellite data. This paper gives a brief overview of the potential applications of remote sensing in water resources.