1000 resultados para Machado de Assis
Resumo:
The heat sensitivity of photochemical processes was evaluated in the common bean (Phaseolus vulgaris) cultivars A222, A320, and Carioca grown under well-watered conditions during the entire plant cycle (control treatment) or subjected to a temporal moderate water deficit at the preflowering stage (PWD). The responses of chlorophyll fluorescence to temperature were evaluated in leaf discs excised from control and PWD plants seven days after the complete recovery of plant shoot hydration. Heat treatment was done in the dark (5 min) at the ambient CO2 concentration. Chlorophyll fluorescence was assessed under both dark and light conditions at 25, 35, and 45 degrees C. In the dark, a decline of the potential quantum efficiency of photosystem II (PSII) and an increase in minimum chlorophyll fluorescence were observed in all genotypes at 45 degrees C, but these responses were affected by PWD. In the light, the apparent electron transport rate and the effective quantum efficiency of PSII were reduced by heat stress (45 degrees C), but no change due to PWD was demonstrated. Interestingly, only the A222 cultivar subjected to PWD showed a significant increase in nonphotochemical fluorescence quenching at 45 degrees C. The common bean cultivars had different photochemical sensitivities to heat stress altered by a previous water deficit period. Increased thermal tolerance due to PWD was genotype-dependent and associated with an increase in potential quantum efficiency of PSII at high temperature. Under such conditions, the genotype responsive to PWD treatment enhanced its protective capacity against excessive light energy via increased nonphotochemical quenching.
Adenanthera pavonina TRYPSIN INHIBITOR RETARD GROWTH OF Anagasta kuehniella (LEPIDOPTERA: PYRALIDAE)
Resumo:
Anagasta kuehniella is a polyphagous pest that feeds on a wide variety of stored products. The possible roles suggested for seed proteinase inhibitors include the function as a part of the plant defensive system against pest via inhibition of their proteolytic enzymes. In this study, a trypsin inhibitor (ApTI) was purified from Adenanthera pavonina seed and was tested for insect growth regulatory effect. The chronic ingestion of ApTI did result in a significant reduction in larval survival and weight. Larval and pupal developmental time of larvae fed on ApTI diet at 1% was significantly longer; the larval period was extended by 5 days and pupal period was 10 days longer, therefore delaying by up to 20 days and resulting in a prolonged period of development from larva to adult. As a result, the ApTI diet emergence rate was only 28% while the emergence rate of control larvae was 80%. The percentage of surviving adults (%S) decreased to 62%. The fourth instar larvae reared on a diet containing 1% ApTI showed a decrease in tryptic activity of gut and that no novel proteolytic form resistant to ApTI was induced. In addition, the tryptic activity in ApTI -fed larvae was sensitive to ApTI. These results suggest that ApTI have a potential antimetabolic effect when ingested by A. kuehniella. (C) 2010 Wiley Periodicals, Inc.
Resumo:
This research was carried out to evaluate and compare 11 organic honey samples and six non organic honey samples, respectively, harvested from islands of the triple frontier (Sao Paulo, Parana and Mato Grosso do Sul states) and from the state of Parana, Brazil. The samples were studied for the presence of coliforms from 35 degrees C, to 45 degrees C and the enumeration of moulds and yeast, a minimum of 1.9 x 10(2) and a maximum of 1.1 x 10(3) CFU/g were observed in organic honey and a minimum of 1.8 x 10(1) and a maximum of 2.5 x 10(2) CFU/g were in non organic honey. In this studied region, the organic honey presented a microbiological quality inferior to the non organic honey.
Resumo:
The Mediterranean flour moth, Anagasta kuehniella, is one of the most important insect pests of grains, reported worldwide, feeding on stored grains and products of rice, rye, corn and wheat. Plants synthesize a variety of molecules, including trypsin inhibitors, to defend themselves against attack by insects. In this study, a trypsin inhibitor (PFTI) was purified from Plathymenia foliolosa (Benth.) seeds and was tested for insect growth regulatory effect. The survival and mass of A. kuehniella larvae feeding on control seeds were about 82.7% and 5 ring, respectively, whereas survival on seeds containing 0.7% PFTI was about 56%, while a 66.1% reduction in the average mass of the larvae was observed. The results from dietary utilization experiments with A. kuehniella larvae showed a reduction in efficiency of conversion of ingested food and digested food, and an increase in approximate digestibility and metabolic cost. The level of trypsin was significantly decreased in larval midgut and increased in the feces of larvae reared on a diet containing 0.7% PFTI. Results indicate that PFTI possesses a toxic effect against A. kuehniella larvae. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A novel trypsin inhibitor (PFTI) was isolated from Plathymenia foliolosa (Benth.) seeds by gel filtration chromatography on a Sephadex G-100, DEAE-Sepharose, and trypsin-Sepharose columns. By SDS-PAGE, PFTI yielded a single band with a M(r) of 19 kDa. PFTI inhibited bovine trypsin and bovine chymotrypsin with equilibrium dissociation constants (K(i)) of 4 x 10(-8) and 1.4 x 10(-6) M, respectively. PFTI retained more than 50% of activity at up to 50 degrees C for 30 min, but there were 80 and 100% losses of activity at 60 and 70 degrees C, respectively. DTT affected the activity or stability of PFTI. The N-terminal amino acid sequence of PFTI showed a high degree of homology with various members of the Kunitz family of inhibitors. Anagasta kuehniella is found worldwide; this insect attacks stored grains and products of rice, oat, rye, corn, and wheat. The velvet bean caterpillar (Anticarsia gemmatalis) is considered the main defoliator pest of soybean in Brazil. Diatraea saccharalis, the sugar cane borer, is the major pest of sugar cane crops, and its caterpillar-feeding behavior, inside the stems, hampers control. PFTI showed significant inhibitory activity against trypsin-like proteases present in the larval midguts on A. kuehniella and D. saccharalis and could suppress the growth of larvae.
Resumo:
Crop rotation in center-pivot for phytonematode control: density variation, pathogenicity and crop loss estimation A field study conducted over three consecutive years, on a farm using crop rotation system under center-pivot and infested with the nematodes Pratylenchus brachyurus, P. zeae, Meloidogyne incognita, Paratrichodorus minor, Helicotylenchus dihystera, Mesocriconema ornata and M. onoense, demonstrated that intensive crop systems provide conditions for the maintenance of high densities of polyphagous phytonematodes. Of the crops established on the farm (cotton, maize, soybean and cowpea), cotton and soybean suffered the most severe crop losses, caused respectively by M. incognita and P. brachyurus. Since maize is a good host for both nematodes, but tolerant of M. incognita, its exclusion from cropping system would be favorable to the performance of cotton, soybean and cowpea. Results from experiments carried out in controlled conditions confirmed the pathogenicity of P. brachyurus on cotton. Additional management with genetic resistance was useful in fields infested with M. incognita, although the soybean performance was affected by low resistance of the cultivars used for P. brachyurus. In conclusion, crop rotation must be carefully planned in areas infested with polyphagous nematodes, specifically in the case of occurrence of two or more major pathogenic nematodes.
Resumo:
Host suitability of oats for Pratylenchus brachyurus Black oat (Avena strigosa), white oat (A. sativa) and Algerian oat (A. byzantina) are extensively cultivated in the south of Brazil for grain, forage, hay and silage production, or as cover crop in no-tillage and crop-pasture integration systems. In both systems, the genotypes of oat used as cover crop must be nonhosts or poor hosts of damaging nematodes for summer cash crops. Taking into account the relevance of Pratylenchus brachyurus as a pathogen for many cash crops in Brazil, two experiments were carried out in a glasshouse in order to evaluate the host suitability of selected oat cultivars to this nematode. The initial population inoculated (Pi) were 92 specimens/plot in experiment 1, and 270 in experiment 2. At the end of experimental periods (86 days after inoculation in experiment 1 and 67 days in experiment 2), the final population (Pf) of P. brachyurus was estimated and the reproductive factor (RF = Pf/Pi) was calculated. The results demonstrated that black oat (RF = 0.04-1.03) is more valuable than Algerian oat (RF = 2.63-2.88) or white oat (RF = 1.37-1.93) for the management of P. brachyurus.
Resumo:
Faced with new challenges, such as emerging diseases, shortening of orchard longevity, and larger social and environmental demands from consumers, practices such as rootstock diversification, irrigation and high density plantings have become relevant for the Brazilian citrus industry. This research had the objective to evaluate the performance of irrigated and non-irrigated `Tahiti` lime trees grafted on 12 rootstocks and one interstock. Plots were distributed following a randomized block design, with four replicates and one plant per plot. Rootstocks influenced plant vigor, especially `Flying Dragon` trifoliate, which reduced tree height by approximately 47% compared to the `Rangpur lime. Trees that were budded on more vigorous rootstocks showed higher yield when grown without irrigation than with irrigation. The `1646` citradia and `Morton` citrange rootstocks performed particularly well. On the other hand, the plants on less vigorous rootstocks showed better performance in terms of yield under irrigation than the same combinations without irrigation, especially those grafted on the tetraploid `Carrizo` and `Troyer` citranges, `Swingle` citrumelo, `Davis A` trifoliate and `Flying Dragon` trifoliate. Plants budded on the `1708` citradia had high yields under irrigated and non-irrigated conditions. The effect of interstock on plant vigor was dependent of rootstock. Interstocked plants on `Davis A` trifoliate were higher than those without interstock. On the other hand, interstocked plants on Catania 2 `Volkamer` lemon were less vigorous than those without interstock. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Genetic transformation with genes that code for antimicrobial peptides has been an important strategy used to control bacterial diseases in fruit crops, including apples, pears, and citrus. Asian citrus canker (ACC) caused by Xanthomonas citri subsp. citri Schaad et al. (Xcc) is a very destructive disease, which affects the citrus industry in most citrus-producing areas of the world. Here, we report the production of genetically transformed Natal, Pera, and Valencia sweet orange cultivars (Citrus sinensis L. Osbeck) with the insect-derived attacin A (attA) gene and the evaluation of the transgenic plants for resistance to Xcc. Agrobacterium tumefaciens Smith and Towns-mediated genetic transformation experiments involving these cultivars led to the regeneration of 23 different lines. Genetically transformed plants were identified by polymerase chain reaction, and transgene integration was confirmed by Southern blot analyses. Transcription of attA gene was detected by Northern blot analysis in all plants, except for one Natal sweet orange transformation event. Transgenic lines were multiplied by grafting onto Rangpur lime rootstock plants (Citrus limonia Osbeck) and spray-inoculated with an Xcc suspension (10(6) cfu mL(-1)). Experiments were repeated three times in a completely randomized design with seven to ten replicates. Disease severity was determined in all transgenic lines and in the control (non-transgenic) plants 30 days after inoculation. Four transgenic lines of Valencia sweet orange showed a significant reduction in disease severity caused by Xcc. These reductions ranged from 58.3% to 77.8%, corresponding to only 0.16-0.30% of leaf diseased area as opposed to 0.72% on control plants. One transgenic line of Natal sweet orange was significantly more resistant to Xcc, with a reduction of 45.2% comparing to the control plants, with only 0.14% of leaf diseased area. Genetically transformed Pera sweet orange plants expressing attA gene did not show a significant enhanced resistance to Xcc, probably due to its genetic background, which is naturally more resistant to this pathogen. The potential effect of attacin A antimicrobial peptide to control ACC may be related to the genetic background of each sweet orange cultivar regarding their natural resistance to the pathogen.
Resumo:
The citriculture in Brazil, as well as in other important regions in the world, is based on very few mandarin cultivars. This fact leads to a short harvest period and higher prices for off-season fruit. The `Okitsu` Satsuma (Citrus unshiu Marc.) is among the earliest ripening mandarin cultivars and it is considered to be tolerant to, citrus canker (Xanthomonas citri subsp. citri Schaad et al.) and to citrus variegated chlorosis (Xylella fastidiosa Wells et al.). Despite having regular fruit quality under hot climate conditions, the early fruit maturation and absence of seeds of `Okitsu` fruits are well suited for the local market in the summer(December through March), when the availability of citrus fruits for fresh consumption is limited. Yet, only a few studies have been conducted in Brazil on rootstocks for `Okitsu`. Consequently, a field trial was carried out in Bebeclouro, Sao Paulo State, to evaluate the horticultural performance of `Okitsu` Satsuma mandarin budded onto 12 rootstocks: the citrandarin `Changsha` mandarin (Citrus reticulata Blanco) x Poncirus trifoliata `English Small`: the hybrid Rangpur lime (Citrus limonia Osbeck) x `Swingle` citrumelo (P. trifoliata (L.) Raf. x Citrus paradisi Macfad.); the trifoliates (P. trifoliata (L) Raf)`Rubidoux`,`FCAV` and `Flying Dragon`(P. trifoliata var. monstrosa); the mandarins `Sun Chu Sha Kat`(C. reticulata Blanco) and `Sunki`(Citrus sunki (Hayata) Hort. ex. Tanaka); the Rangpur limes (C. limonia Osbeck) `Cravo Limeira` and `Cravo FCAV`;`Carrizo` citrange (Citrus sinensis x P. trifoliata), `Swingle` citrumelo (P. trifoliata x C. paradisi), and `Orlando` tangelo (C. paradisi x Citrus tangerina cv. `Dancy`). The experimental grove was planted in 2001, using a 6 m x 3 m spacing, in a randomized block design. No supplementary irrigation was applied. Fruit yield, canopy volume, and fruit quality were assessed for each rootstock. A cluster multivariate analysis identified three different rootstock pairs with similar effects on plant growth, yield and fruit quality of `Okitsu` mandarin. The `Flying Dragon `trifoliate had a unique effect over the `Okitsu` trees performance, inducing lower canopy volume and higher yield efficiency and fruit quality, and might be suitable for high-density plantings. The `Cravo Limeira` and `Cravo FCAV` Rangpur limes induced early-ripening of fruits, with low fruit quality. `Sun Chu Sha Kat` and `Sunki` mandarins and the `Orlando` tangelo conferred lower yield efficiency and less content of soluble solids for the latter rootstock. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The weed, known commonly as vassourinha de botao (buttonweed), is present in several crops in northern and north-eastern Brazil. Its occurrence is common in sugarcane and soybean crops in the states of Goias, Tocantins, and Maranhao. However, there is no published information in the literature about its taxonomic classification. Thus, this research aimed to classify taxonomically this species in order to develop a classification key based on the morphological characteristics among varieties of Borreria densiflora DC., as well as to illustrate it and provide a palynological basis to classify this species as a new variety For the classification process, data from the literature, morphological characteristics, and palynological evidence were considered. In this article, we describe a new variety, B. densiflora DC. var. latifolia E.L. Cabral & Martins. The new variety possesses a terrestrial habitat and it is a simple perennial weed species. These results show the importance of an accurate identification, as well as an understanding of the evolutionary changes inherent to weeds (like intraspecific variability), breeding system, genetic potential, and ecological studies. Those factors are essential to the beginning of a long-term weed management strategy.
Resumo:
Transgenic Citrus sinensis (L.) Osb. cv. Hamlin plants expressing the hrpN gene were obtained by Agrobacterium tumefaciens (Smith and Towns) Conn-mediated transformation. hrpN encodes a harpin protein, which elicits the hypersensitive response and systemic acquired resistance in plants. The gene construct consisted of gst1, a pathogen-inducible promoter, a signal peptide for protein secretion to the apoplast, the selection genes nptI1 or aacC1 and the Nos terminator. The function of gst1 in citrus was evaluated in transgenic C. sinensis cv. Valencia harboring the reporter gene uidA (gus) driven by this promoter. Histochemical analysis for gus revealed that gst1 is activated in citrus leaves by both wounding and inoculation with Xanthomonas axonopodis Starr and Garces pv. citri (Hasse) Vauterin et al. Genetic transformation was confirmed by Southern blot hybridization in eight cv. Hamlin acclimatized plants. RT-PCR confirmed hrpN gene expression in seven cv. Hamlin transgenic lines before pathogen inoculation. Some hrpN transgenic lines showed severe leaf curling and abnormal growth. Six hrpN transgenic lines were propagated and evaluated for susceptibility to X axonopodis pv. citri. RT-PCR confirmed gene expression in all six hrpN transgenic lines after pathogen inoculation. Several of the hrpN transgenic lines showed reduction in susceptibility to citrus canker as compared with non-transgenic plants. One hrpN transgenic line exhibited normal vegetative development and displayed very high resistance to the pathogen, estimated as up to 79% reduction in disease severity. This is the first report of genetic transformation of citrus using a pathogen-inducible promoter and the hrpN gene. Further evaluations of the transgenic plants under field conditions are planned. Nevertheless, the evidence to date suggests that the hrpN gene reduces the susceptibility of citrus plants to the canker disease. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Despite its outstanding position, the Brazilian citriculture is established on a very limited pool of varieties that limits its expansion and restricts the fruit availability throughout the year. This situation determines the urgent necessity of developing alternative scion and rootstock cultivars, with good performance under local conditions. `Folha Murcha` sweet orange (Citrus sinensis (L.) Osbeck) is a late-harvest cultivar, suitable both for the juice processing industry and the fresh fruit market, being described as tolerant to citrus canker (Xanthomonas citri subsp. citri Schaad et al.), and less affected by citrus variegated chlorosis (Xylella fastidiosa Wells et al.). A study was conducted in Bebedouro, Sao Paulo State, Brazil, to evaluate the horticultural performance of `Folha Murcha` sweet orange budded onto 12 rootstocks: the citrandarin `Changsha` mandarin (Citrus reticulata Blanco) x Poncirus trifoliata `English Small`: the hybrid `Rangpur` lime (Citrus limonia Osbeck) x `Swingle` citrumelo (P. trifoliata (L.) Raf x Citrus paradisi Macfad.); the trifoliates (P. trifoliata (L.) Raf.)`Rubidoux`, `FCAV`, and `Flying Dragon` (P. trifoliata var. monstrosa); the `Sun Chu Sha Kat` mandarin (C. reticulata Blanco); the `Sunki` mandarin (Citrus sunki (Hayata) Hart. ex. Tanaka); the `Rangpur` limes (C. limonia Osbeck) `Cravo Limeira` and `Cravo FCAV`; `Carrizo` citrange (C. sinensis x P. trifoliata), `Swingle` citrumelo (P. trifoliata x C. paradisi), and `Orlando` tangelo (C. paradisi x Citrus tangerina cv. `Dancy`). The experimental grove was planted in 2001, using a 7 m x 4 m spacing, in a randomized block design, with five replications and two plants per plot. No supplementary irrigation was applied. Fruit yield, canopy volume, tree tolerance to drought and to citrus variegated chlorosis, and fruit quality were assessed for each rootstock. Trees grafted onto the `Flying Dragon` trifoliate were smaller in size, but had largest yield efficiency when compared to those grafted onto other rootstocks. Lower alternate bearing index was observed on trees budded onto `Cravo FCAV` `Rangpur` lime. Both `Rangpur` lime rootstocks and the `Sunki` mandarin induced higher tree tolerance to drought. The `Flying Dragon` trifoliate induced better fruit quality and higher tolerance to citrus variegated chlorosis (CVC) to `Folha Murcha` trees. A cluster multivariate analysis identified three groups of rootstocks with similar effects on `Folha Murcha` tree performance. Among the 12 evaluated rootstocks, the `Flying Dragon` trifoliate has a unique effect on plant growth, tolerance to drought and CVC, fruit yield and fruit quality of `Folha Murcha` trees, and may be better suited for high-density plantings. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
`Swingle` citrumelo [Citrus paradisi MacFaden x Poncirus trifoliata (L.) Raf.] has been extensively used as a rootstock in several citrus growing regions of the World, including Southern Brazil where `Rangpur` lime (Citrus limonia Osbeck) is still the predominant variety despite being affected by several important pathogens. in this case, `Swingle` citrumelo is used to produce nursery trees to establish new orchards or to be inarched in adult and healthy groves in order to change the rootstock. We report herein a system to produce trees on `Swingle` citrumelo more rapidly by budding onto non-rooted cuttings, as well as assessing potential to rapidly multiply `Swingle` through rooting of non-budded cuttings. Therefore, two potential products are described: budded trees and rooted rootstock cuttings. `Valencia` sweet orange [Citrus sinensis (L.) Osbeck] was budded at different heights on cuttings derived from eight-month old rootstocks. Grafted and additional non-budded cuttings were then treated with indole-3-butyric acid (500 mg L(-1)) or left untreated before rooting. Three types of cuttings were evaluated: softwood, semi-hardwood and hardwood. The use of nursery trees derived from pre-budded hardwood cuttings of `Swingle` citrumelo is an alternative grafting method on this cultivar. Softwood cuttings with one leaf pair were considered the most adequate material for rapid multiplication of `Swingle` citrumelo by cutting. This could be particularly useful for inarching production or conventional budding after transplant of cutting-derived rootstocks. (C) 2008 Elsevier B.V. All rights reserved.