948 resultados para MULTIVARIATE CALIBRATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection canines represent the fastest and most versatile means of illicit material detection. This research endeavor in its most simplistic form is the improvement of detection canines through training, training aids, and calibration. This study focuses on developing a universal calibration compound for which all detection canines, regardless of detection substance, can be tested daily to ensure that they are working with acceptable parameters. Surrogate continuation aids (SCAs) were developed for peroxide based explosives along with the validation of the SCAs already developed within the International Forensic Research Institute (IFRI) prototype surrogate explosives kit. Storage parameters of the SCAs were evaluated to give recommendations to the detection canine community on the best possible training aid storage solution that minimizes the likelihood of contamination. Two commonly used and accepted detection canine imprinting methods were also evaluated for the speed in which the canine is trained and their reliability. As a result of the completion of this study, SCAs have been developed for explosive detection canine use covering: peroxide based explosives, TNT based explosives, nitroglycerin based explosives, tagged explosives, plasticized explosives, and smokeless powders. Through the use of these surrogate continuation aids a more uniform and reliable system of training can be implemented in the field than is currently used today. By examining the storage parameters of the SCAs, an ideal storage system has been developed using three levels of containment for the reduction of possible contamination. The developed calibration compound will ease the growing concerns over the legality and reliability of detection canine use by detailing the daily working parameters of the canine, allowing for Daubert rules of evidence admissibility to be applied. Through canine field testing, it has been shown that the IFRI SCAs outperform other commercially available training aids on the market. Additionally, of the imprinting methods tested, no difference was found in the speed in which the canines are trained or their reliability to detect illicit materials. Therefore, if the recommendations discovered in this study are followed, the detection canine community will greatly benefit through the use of scientifically validated training techniques and training aids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03 - 0.8 ng for the GC-MS and between 0.03 - 2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.