975 resultados para MORPHOLOGICAL VARIATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria experience continuous fusion and fission in a living cell, but their dynamics remains poorly quantified. Here a theoretical model was developed, upon a simplified population balance equation (PBE), to predict the morphological changes induced by mitochondrial fission and fusion. Assuming that both fission and fusion events are statistically independent, the survival probability of mitochondria staying in the fission or fusion state was formulated as an exponentially-decayed function with time, which depended on the time-dependent distribution of the mitochondrial volume and the fission and fusion rates. Parametric analysis was done for two typical volume distributions. One was Gamma distribution and the other was Gaussian distribution, derived from the measurements of volume distribution for individual mitochondria in a living cell and purified mitochondria in vitro. The predictions indicated that the survival probability strongly depended on morphological changes of individual mitochondria and was inversely correlated to the fission and fusion rates. This work provided a new insight into quantifying the mitochondrial dynamics via monitoring the evolution of the mitochondrial volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

青藏高原东缘的亚高山针叶林是长江上游重要的生态屏障,经过近六十年的采伐后,取而代之的是大量人工种植的云杉纯林。目前,这些人工林已经表现出树种单一,结构层次简单等生态问题,其物种多样性及生态效益与同地带天然林相比差距较明显。如何丰富该地区物种多样性,完善人工林生态系统的生态功能是一个十分重要的课题。林下植物是人工林群落的重要组成部分,对维持群落的生物多样性及完善生态系统功能具有明显的作用。因此,研究该地区人工针叶林的林下植被对不同生境的适应性对于理解人工林生态系统物种多样性的形成和维持机制都具有重要的意义。 本文以青藏高原东部亚高山针叶林的主要森林类型----云杉人工林为研究对象,选择林下11种具有不同喜光特性的常见植物,分别设置人工林林冠下及成熟林窗为研究样地,通过对各种植物叶片形态与物质分配特征、叶片解剖学特征、叶片光合生理特性、植物自然分布特征等方面的比较分析,研究林下植物对不同光生境的适应策略及其适应能力,揭示不同物种对人工林生境的适应共性,为西南亚高山地区植被恢复及人工林的经营管理提供科学依据。具体研究结果如下: 在叶片形态和物质分配特征方面:在林窗光生境中,11种林下植物叶片比叶重(LMA)显著高于林下光生境的同种植物。同时,林窗下生长的植物叶片叶片厚度及栅栏细胞长度显著增加,这是影响叶片比叶重变化的直接原因。而多数植物叶重比在两种生境中无明显变化。说明在长期适应自然生境之后,植物可能更多地采取调节叶片组织细胞水平(即叶片功能细胞形态)及叶片器官水平(即单个叶片形态)特征的策略来适应各类生境,而非整株水平上的叶片总比重的增减。 在叶片解剖结构特征方面:多数阔叶物种栅栏组织厚度(PT)、栅栏组织厚度/海绵组织厚度(PT/ST)、栅栏细胞层数及近半数种的气孔密度(SD)在林窗生境中更大或更多,而叶片表皮细胞厚度(UET、LET)气孔长径(SL)及海绵组织厚度(ST)受两种生境影响不大。喜光特性相似的物种在生境适应策略上具有一定的趋同性。 在光合生理特征方面:在林窗生境中多数种植物的最大光合速率(Amax)、暗呼吸速率(Rd)及喜光植物光补偿点(LCP)显著或极显著高于林内生境同种植物。且在同一生境条件下,多数深度耐荫植物比喜光及轻度喜光植物有稍低的Rd和LCP。各植物在林内低光生境中具有更大的内禀光能转化效率,并在中午12:00~14:00之间光强最大的时刻发生了的最深程度的光抑制。多数种能通过调节自身某种光合素含量或色素之间的比例来适应不同的光生境,即通过增加叶绿素含量或降低Chla/b值来适应林内弱光生境,通过提高类胡萝卜素含量或单位叶绿素的类胡萝卜素含量降低强光带来的伤害。绝大多数物种并不采取调节叶片C、N含量的策略来适应不同的光生境。总之,植物部分光合参数(Amax、Rd、LCP)受生境的影响与其自身喜光特性有关,但另一些参数(Fv/Fm日变化、色素含量及比例、叶氮相对含量)受生境影响与其自身喜光特性无明显关联。 在表型可塑性方面:在叶片各表型参数中,器官水平及细胞水平的形态特征参数平均可塑性大于整株水平形态和物质分配特征参数可塑性;叶片光合组织的可塑性大于非光合组织可塑性;反映植物光合能力的参数可塑性大于叶片色素含量参数可塑性。植物叶片形态和物质分配、解剖学特征参数平均可塑性大小与其自身喜光特性基本吻合,即喜光种及轻度耐荫种各参数可塑性最高,深度耐荫种可塑性最小,而这种规律并未在光合生理参数的可塑性大小上体现出来。但是叶片形态和物质分配参数、光合生理参数的平均可塑性水平却大于叶片解剖学参数。 在植物自然分布特征方面:喜光物种云杉幼苗及歪头菜在林内生境中分布密度明显降低,深度耐荫种疏花槭却恰恰相反,更多数物种(7种植物)在两种生境中密度变化趋势不明显。从分布格局来看,7种植物在两种生境中均为聚集分布,但聚集强度为林窗>林内;少数物种桦叶荚迷、直穗小檗、冰川茶藨、黄背勾儿茶在林窗中为聚集型,在林内生境中的分布型发生改变而成为随机型,说明光生境的差异能影响到植物种群的分布特征。但这种影响程度与植物自身的喜光特性无关,同时与各物种叶片表型平均可塑性的大小也无明显关联。 The subalpine coniferous forest area in eastern Qinghai-Tibet Plateau is important ecology-barrier of upriver Yangtze. In past sixty years, those forests had been cut down and replaced with a lot of spruce plantations. At now, there are many ecology problems presenting to us such as singleness species, simple configuration, lower species diversity and ecological benefit than natural forests at the same belt. How to restore the species diversity and enhance the eco-function of the plantations is a very important issue. The understory plants are important part of plantation community, which improved the bio-diversity and eco-function distinctly of forests. So, it is very significance to study the adaptation of understory plants to different environment in plantation, and this study would helping us to understand how plantations to develop and remain their biodiversity. This study was conducted in a 60a spruce plantation in Miyaluo located in western Sichuan, China, and spruce plantation is major types of subalpine coniferous forest in eastern Qinghai-Tibet Plateau. In this paper, the leaf morphological and biomass-distributed characteristics, the anatomical characteristics, the photosynthetic characteristics and the distribution patterns characteristics of eleven different light-requirement understory species grown in two different environments (forest gaps and underneath close canopy) were studied and compared. The purpose of this study was to analyze the adaptation of this forest understory plants, to show up the commonness of these different light-requirement understory species in light acclimation, and to provide some scientific reference to manage and restore the vegetation of subalpine plantation of southwest China. The results were as follows: The leaf morphological and biomass-distributed characteristics: These eleven species in forest gaps had significantly higher dry weight per leaf area (LMA) than those under close canopy. The palisade parenchyma cells of the broad-leaved species in gaps were significantly longer than those grown under the canopy, which been a directed factor for the change of leaf mass per unit area (LMA) in different environment. But the leaf weight ratio (LWR) of most plants species were not evidently changed by the contrasted environments in our study. It was shown the morphological characteristics changing been adopted as a strategy of light acclimation for plants wasn’t on whole plant level (leaf weight ratio) but cellular level (the function cells morphological characteristics) and organic level (the leaf morphological and biomass-distributed characteristics) mostly. The leaf anatomical characteristics: Most broad-leaved plants in gaps increased palisade parenchyma thickness (PT), the palisade parenchyma cell layers and the ratio of palisade to spongy parenchyma (PT/ST). So did as almost about half species in this study in stomatal density (SD). No significant differences in thickness of leaf epidermal cells (UET, LET), stomatal length (SL) and spongy parenchyma (ST) between two environments of most species were observed. The results suggested that species with light-requirement approximately had convergent evolution on adaptation to light condition. The leaf photosynthetic characteristics: The dark respiration rate (Rd) of most plants species, the light compensation point (LCP) of light-demanding plants species in gaps were significantly increased than under close canopy in this study. In a same habitat, most deep-shade-tolerant plants had lower Rd and LCP than those light-demanding plants and slight-shade-tolerant plants. Each species has bigger inherent electron transport rate under close canopy than in gaps, and the greatest photoinhibition happened during 12 to 14 in the daytime. Most species could adapt different light environment by the way of changing their photosynthetic pigments content or the ratio of pigments content. For example, some plants under close canopy increased chlorophyll (Chl) or reduced the values of the ratio Chla/b to adapted the low light condition, some plants in gaps increased carotenoid (Car) or reduced the weight ratio CarChl to avoid been hurt in high light. For most plants, changing the content of C and N in leaf wasn’t a strategy of light acclimation. In conclusion, the variation of some leaf photosynthetic parameters in different light environment such as Fv/Fm, pigments, C and N in leaf related with the light-requirmnet of species, but the others such as Amax, Rd, LCP did not. The leaf plasticity indexes: Among those leaf plasticity indexes, the leaf morphological and biomass-distributed parameters on cellular and organic level were greater than on whole plant level for same species, and the photosynthetic parenchyma parameters were greater than non-photosynthetic parenchyma parameters in same leaf, and photosynthetic capability parameters were greater than photosynthetic pigments content parameters for same species. The average plasticity indexes of leaf morphological and biomass-distributed and anatomical parameters were accordant with plants’ light-requirement approximately: those light-demanding plants and slight-shade-tolerant plants had bigger plasticity indexes than deep-shade-tolerant plants. But this regular wasn’t observed in physiological plasticity indexes for most plants, though the average leaf plasticity indexes of leaf morphological and biomass-distributed, photosynthetic characteristics parameters was greater than the anatomical characteristics parameters. The distribution patterns characteristics: Oppositely to the deep-shade-tolerant specie Acer laxiflorum Pax., the density of light-demanding species Picea asperata Mast. and Vicia unijuga A. Br. in gaps was bigger than under close canopy. Each of the other species has the approximately density in two different environment. The spatial patterns of seven species were aggregated distribution in two environments, but the trend of aggregation of population under close canopy was decrease from in gaps. A few species such as Viburnum betulifoium Batal., Berberis dasystachya Maxim., Ribes glaciale Wall. and Berchemia flavescens Brongn. were aggregated distribution in gaps while random distribution under close canopy. It was shown that the difference between two light environments could affect the distribution pattern of plant population, and the effect didn’t relate with the light-requirement or plasticity indexes of species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

海拔梯度造成的环境异质性,如崎岖的地形、复杂的植被结构以及花期延迟等可能会极大地影响到物种的形态和遗传变异格局。理解物种形态和遗传变异的海拔格局对于物种多样性的管理和保护是非常重要的。尽管植物群体遗传学是一个飞速发展的研究领域,然而与海拔相关的形态变异、遗传变异及群体间遗传差异的研究却很少。到目前为止,还不清楚遗传变异与海拔之间是否必然的相关性。 川滇高山栎是一种重要的生态和经济型树种,广泛分布于中国西南的四川、西藏、贵州和云南省的高海拔地区,在保持水土、调节气候方面起着十分重要的作用。尽管主要受阳光限制而仅分布于阳坡,但其海拔梯度范围较大,表明川滇高山栎对不同的环境具有很强的适应性。本文通过叶型及生理响应、微卫星分子标记和扩增性片段长度多态性方法,试图探索川滇高山栎叶沿海拔梯度的形态和生理响应及其沿海拔梯度的遗传变异格局,为川滇高山栎的保护和利用提供进一步的遗传学理论依据和技术指导。 对叶形、含氮量及碳同位素的试验结果表明,平均比叶面积、气孔密度、气孔长度和气孔指数等气孔参数随海拔的升高呈非线性变化。在海拔大于2800 m时,川滇高山栎的比叶面积、气孔长度和气孔指数都随海拔升高而降低,但是在海拔小于2800 m时,这些指标都随海拔的升高而增大。相对而言,单位叶面积的含氮量和碳同位素则表现出相反的变化模式。另外,比叶面积是决定碳同位素沿海拔梯度变化的最重要参数。本研究结果表明,海拔2800 m附近是川滇高山栎生长和发育的最适地带,在这里生长的植物叶片厚度更薄、气孔更大、叶碳同位素值更小。 利用六对微卫星引物对五个不同海拔川滇高山栎群体遗传多样性进行研究,结果表明,群体内表现出较高的遗传多样性,平均每位点等位基因数11.33个,平均期望杂合度达0.820。群体间差异较小,分化仅为6.6%。聚类分析也并没有显示出明显的海拔格局。然而低频率等位基因却与海拔呈显著性正相关(R2=0.97, P < 0.01),表明在高海拔处,川滇高山栎以更多的稀有基因来适应恶劣的环境条件。本试验结果表明由海拔梯度形成的选择性压力对川滇高山栎群体的遗传变异影响并不明显。 为了进一步探讨川滇高山栎群体遗传变异与海拔之间的相互关系,我们还对其进行了扩增性片段长度多态性分析。结果表明:(1)随海拔的升高(从群体WL2到群体WL5),群体内遗传变异降低,而群体间遗传差异增加;(2)低海拔群体WL1表现出最低的遗传变异性(HE = 0.181),同时与其余四个群体间呈现出最大的遗传差异性(平均FST = 0.0596);(3)在除去低海拔群体WL1后,Mantel检测表明群体间遗传距离与海拔距离之间表现出正相关性。另外,研究结果还表明,遗传变异受生境条件(过度的湿热环境)及人为干扰(火烧、砍伐和放牧)的影响,这一点至少在低海拔群体WL1上发生了作用。 通过叶形态、生理及DNA分子水平的研究,结果表明叶形态特征和碳同位素与海拔紧密相关,与海拔之间呈非线性变化,海拔2,800 m附近是川滇高山栎生长和发育的最适地带。海拔梯度在一定程度上会影响到川滇高山栎群体的遗传变异结构,但在这样一个狭窄的地理分布区域里,这种影响并不足以导致群体间较大的遗传分化。同时生境条件及人为干扰也是影响遗传变异的限制性因子,不容忽视。 Altitudinal gradients impose heterogeneous environmental conditions, such as rugged topography, a complex pattern of vegetation and flowering delay, and they likely furthermore markedly affect the morphological and genetic variation pattern of a species. Understanding altitudinal pattern of morphological and genetic variation at a species is important for the management and conservation of species diversity. Although plant population genetics is a fast growing field of research, there are only few recent investigations, which analyzed the genetic differentiation and changes of intra-population variation along altitudinal gradients. At present, it is still unclear whether there are some common patterns of morphological and genetic variation with altitude. Quercus aquifolioides Rehder & E.H. Wilson, which is an important ecological and economical endemic woody plant species, is widely distributed in the Yunnan and Sichuan provinces, Southwest China. Its large range of habitat across different altitudes implies strong adaptation to different environments, although it is mainly restricted to sunny, south facing slopes. It plays a very important role in preventing soil erosion, soil water loss and regulating climate, as well as in retaining ecological stability. In this paper, we tried to understand the altitudinal pattern of morphological and genetic variation along altitudinal gradients through the experiments of leaf morphological and physiological responses, microsatellite analysis and AFLP markers. In leaf morphological and physiological responses experiment, we measured leaf morphology, nitrogen content and carbon isotope composition (as an indicator of water use efficiency) of Q. aquifolioides along an altitudinal gradient. We found that these leaf morphological and physiological responses to altitudinal gradients were non-linear with increasing altitude. Specific leaf area, stomatal length and index increased with increasing altitude below 2,800 m, but decreased with increasing altitude above 2,800 m. In contrast, leaf nitrogen content per unit area and carbon isotope composition showed opposite change patterns. Specific leaf area seemed to be the most important parameter that determined the carbon isotope composition along the altitudinal gradient. Our results suggest that near 2,800 m in altitude could be the optimum zone for growth and development of Q. aquifolioides, and highlight the importance of the influence of altitude in research on plant physiological ecology. Genetic variation and differentiation were investigated among five natural populations of Q. aquifolioides occurring along an altitudinal gradient that varied from 2,000 to 3,600 m above sea level in the Wolong Natural Reserve of China, by analyzing variation at six microsatellite loci. The results showed that the populations were characterized by relatively high intra-population variation with the average number of alleles equaling 11.33 per locus and the average expected heterozygosity (HE) being 0.779. The amount of genetic variation varied only little among populations, which suggests that the influence of altitude factors on microsatellite variation is limited. However, there is a significantly positive correlation between altitude and the number of low-frequency alleles (R2=0.97, P < 0.01), which indicates that Q. aquifolioides from high altitudes has more unique variation, possibly enabling adaptation to severe conditions. F statistics showed the presence of a slight deficiency of heterozygosity (FIS=0.136) and a low level of differentiation among populations (FST=0.066). The result of the cluster analysis demonstrates that the grouping of populations does not correspond to the altitude of the populations. Based on the available data, it is likely that the selective forces related to altitude are not strong enough to significantly differentiate the populations of Q. aquifolioides in terms of microsatellite variation. To further elucidate genetic variation pattern of Q. aquifolioides populations under sub-alpine environments, genetic variation and differentiation were investigated along altitudinal gradients using AFLP markers. The altitudinal populations with an average altitude interval of 400 m, i.e. WL1, WL2, WL3, WL4 and WL5, correspond to the altitudes 2,000, 2,400, 2,800, 3,200 and 3,600 m, respectively. Our results were as follows: (i) decreasing genetic variation (ranging from 0.253 to 0.210) and increasing genetic differentiation with altitude were obtained from the WL2 to the WL5 population; (ii) the WL1 population showed the lowest genetic variation (HE = 0.181) and the highest genetic differentiation (average FST = 0.0596) with the other four populations; (iii) the positive correlation was obtained using Mantel tests between genetic and altitude distances except for the WL1 population. Our results suggest that altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides populations to some extent. In addition, habitat environments (unfavorable wet and hot conditions) and human disturbances (burning, grazing and felling) were possible influencing factors, especially to the low-altitude WL1 population. The present study shows that there were close correlations between morphological features and carbon isotope composition in our data. This indicates that a coordinated plant response modified these parameters simultaneously across different altitudes. Around 2,800 m altitude there seems to be an optimum zone for growth and development of Q. aquifolioides, as indicated by thinner leaves, larger stomata and more negative d13C values. All available evidence indicates altitudinal gradients may have influenced the genetic variation pattern of Q. aquifolioides to some extent. Decreasing genetic variation and increasing genetic differentiation with altitude was obtained except for the WL1 population. And the environment of habitats and human disturbances were also contributing factors, which impact genetic variation pattern, especially to the low-altitude WL1 population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。本项目以青杨组杨树为模式植物,从形态和生理方面研究了来自不同UV-B背景下的康定杨与青杨在增强UV-B下的反应及其反应差异,并探讨了干旱、施肥对它们抗UV-B能力的影响。杨树具有分布广、适应性强、在生态环境治理和解决木材短缺方面均占有重要位置,研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果有以下: 1. 在温室中经过增强UV-B处理,杨树的外部形态及生理活动受到了一定程度的影响。增强UV-B导致康定杨、青杨的生物量、叶面积及节间长度降低,叶片增厚,SOD活性升高,膜伤害增加,而对叶片数目、R/S、叶绿素A、叶绿素B及整个叶绿素含量没有影响。两种杨树对UV-B胁迫的响应存在差异:在增强UV-B条件下,青杨的植株高度、生物量、叶面积、脯氨酸含量、长期用水效率受到的影响大于康定杨,相比而言,康定杨在比叶面积、叶片厚度、可溶性糖含量、UV-B吸收物质的含量及SOD和GPX活性方面增加的程度大于青杨。这些区别说明,来自于高海拔的康定杨比来自于低海拔的青杨对增强UV-B 具有更强的耐性。我们认为二者在叶片厚度、比叶面积、UV-B吸收物质含量及SOD、GPX活性差异是导致对增强UV-B耐性不同的原因。 2. 干旱与增强UV-B对杨树的生长和生理特性均产生了影响,而且两种胁迫共同作用时干旱表现减弱或加剧了UV-B对杨树某些形态和生理特性的影响。 据试验结果,干旱显著地降低了杨树的株高、叶片数目、叶面积,增加了叶片厚度,促进ABA的积累,提高了CAT活性。对于干旱,两种杨树之间也表现出了一定的差异性。可溶性蛋白质和脯氨酸在青杨叶片中得到显著积累,而在康定杨中没有变化。此外,CAT、长期用水效率在康定杨中受到的影响更加明显。长期用水效率的不同变化趋势说明两种杨树对水分胁迫采用了不同的用水策略,康定杨采用的是节水用水策略,提高用水效率,而青杨采用的是耗水的用水策略。根据干旱对叶面积、脯氨酸、ABA含量、CAT活性及长期用水效率等方面的影响,我们认为来自高海拔地区的康定杨比来自低海拔的青杨有更大的耐旱性,这是对生长环境长期适应的结果。在高海拔地区,因霜冻常带来土壤水分不可利用,降低了根系对水分的吸收,树木容易受到的生理性干旱。另外,高海拔的地区低的气温使植株对严寒有较强的耐性,减少了水分的需要。 生长于增强UV-B下的康定杨和青杨植株表现为高度降低,叶面积缩小,比叶面积增加;叶片栅栏组织、海绵组织均受到增强UV-B的影响,其厚度的增加导致整个叶片变厚。增强UV-B还显著提高了杨树的APX活性、UV-B吸收物质含量,而对叶片数目、ABA、可溶性蛋白质含量及CAT活性没有产生影响。试验中也观察到了两种杨树对增强UV-B响应的差异:与康定杨相比,在增强UV-B下青杨株高、叶面积降低的程度更大一些,SOD活性显著提高。另外UV-B吸收物质受到的影响不同。根据这些差别,高海拔的康定杨(3500 m)比来自低海拔的青杨(1500 m)增强UV-B有较强的耐性。 与水分充足情况下UV-B对植株的影响相比,干旱对杨树抗增强UV-B产生了一定的影响,表现为加剧或减弱UV-B对植物的影响,但这种影响与形态、生理指标有关。当干旱与增强UV-B共同作用时,杨树植株的株高、叶面积进一步降低、叶片进一步增厚。就脯氨酸的积累的而言,在没有水分胁迫时,增强UV-B促使它显著增加,而在干旱处理下这种效果变得不明显。干旱对增强UV-B的影响还与杨树的种类有一定的关系。在康定杨中,干旱减弱了增强UV-B对栅栏组织与海绵组织的影响,且在植株高度、叶面积上表现出累加效应,而在CAT上交互作用显著;但在青杨中干旱则加剧增强UV-B对栅栏组织与海绵组织的影响,在植株高度、叶面积及比叶面积上表现出显著的交互作用。据碳同素分析,在水分充足的条件下,无论是康定杨,还是青杨,增强UV-B均导致其长期用水效率的提高,然而当两种胁迫共同作用时,长期用水效率则表现出差异,在青杨中,长期用水效率得到进一步增高,而康定杨中干旱的效应被增强UV-B所减轻。 3. 田间试验表明,杨树的生长、生理特征都受到养分和增强UV-B的影响。施肥对杨树的影响表现为:提高了叶面积、生物量及SOD的活性,降低了抗坏血酸含量。对于施肥作用,两种杨树的反应也有区别:在康定杨中施肥显著增加了的叶片长度、宽度及光合色素的含量,降低了净光合速率、气孔导度及胞间CO2浓度;在青杨中,则SOD、GPX、APX活性表现增加。从试验看出,施肥对来自于高海拔地区的康定杨(3500 m)的影响较大,对来自低海拔的青杨(1500 m)影响较小,这与它们对原产地的生境适应有一定关系。在康定杨生长的高海拔地区,低温度和湿度不能为地上凋落物或土壤中的根分解提供理想的条件,造成当地土壤的低养分状况,所以当肥料施用以后,效果显著。 经过增强UV-B处理,杨树叶片中UV-B吸收物质含量、GPX的活性得到提高,而脯氨酸、丙二醛、可溶性蛋白质、叶绿素及类胡萝卜素含量没有受到影响。对于增强UV-B两种杨树受到的影响也有所不同:在青杨中增强UV-B导致叶面积缩小,生物量、净光合速率降低,APX的活性及长期用水效率的提高,而对康定杨的这些指标没有产生显著影响,相反抗氧化酶的活性明显高于青杨。这些差异性是由于两种杨树对原产地不同UV-B背景的长期适应结果。康定杨长期生长在较高UV-B环境中,对UV-B有较强的耐性。而青杨适应于较低的UV-B环境,对增强UV-B较为敏感。 试验中施肥也影响了植株对增强UV-B的反应,不过这种影响与杨树的种类及测定指标有一定的相关性。例如,在缺肥的情况下,青杨的长期用水效率和康定杨的叶绿素含量都受到增强UV-B的显著影响,而施肥以后这种影响变得不显著。在缺肥的条件下,GPX、APX在青杨中的活性、GPX在康定杨中的活性对增加UV-B反应不敏感;而施肥以后则变化显著,同样胞间CO2浓度在康定杨也有类似的变化。 For past decades, Ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. In this experiment, different species of Populus section Tacamahaca Spach from different UV-B background were selected as a model plant to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B were observed and the different responses between P. kangdingensis and P. cathayana were discussed, furthermore the influences of drought and fertilizer on responses induced by enhanced UV-B were studied. Since poplars play an important role in lumber supply, and are important component of ecosystems due to their fast growth and wide adaptation, the study could provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem. The results are as follows: 1. The experiment conducted in a greenhouse indicated that morphological and physiological traits of two poplars were affected by enhanced UV-B radiation. Enhanced UV-B radiation not only reduced biomass, leave area and internode length, but also increased leaf thickness and SOD activity as well as MDA concentration and electrolyte rate. However, no significant changes in leaf numbers, root shoot ratio, and total chlorophyll and chlorophyll component were observed. There were different responses to enhanced UV-B radiation between two species. Compared with P. kangdingensis, cuttings of P. cathayana, exhibited lower height increment and smaller leaf area. In addition, there were significant differences in free proline, soluble protein, and UV-B absorbing compounds, and the activity of SOD and GPX, long-term WUE between them. Differences in plant height, biomass, leaf area, free proline concentration, and long-termed WUE showed that P. cathayana were more affected by enhanced UV-B radiation than P. kangdingensis. In contrast, more increase of specific leaf mass, leaf thickness, and soluble sugar, and UV-B absorbing compounds, and activity of SOD and GPX were observed in P. kangdingensis. According to these results, we suggested that P. kangdingensis from high elevation, which adapted to higher UV-B environments, had more tolerance to enhanced UV-B than P. cathayana from low elevation, which adapted to lower UV-B environment. We believe it was the difference of leaf thickness, specific leaf mass, and UV-B absorbing compounds as well as the activity of SOD and GPX resulted in lower adaptation of P. cathayana to enhanced UV-B radiation. 2. Growth and physiological traits of two poplars were affected by both drought and enhanced UV-B radiation. Moreover, it was observed that when two stresses applied together drought could exacerbate UV-B effects or decrease sensitivity to UV-B. In the experiment, drought significantly decreased plant height, leaf numbers, leaf area, and increased leaf thickness, and ABA, and CAT activity of two poplars. There were significant interspecific differences to drought stress. Exposed to drought, soluble protein and proline concentration were increased in P. cathayana but not in P. kangdingensis. However, more changes in CAT and long-term WUE were observed in kangdingensis. Different change in long-term WUE suggests that two poplars adapted different water-use strategies. P. kangdingensis employ a conservative water-use strategy, whereas P. cathayana employ a prodigal water-use strategy. Based on the differences in leaf area, accumulation of free proline and ABA, CAT activity as well as long-term WUE, we believed that P. kangdingensis from high elevation had a greater tolerance to drought than P. cathayana from low elevation,which is the result of adaptation to local environment. In high elevation area, trees are prone to suffer from physiological drought because of un-movable water caused by frost. Besides lower temperature enable the plants had greater adaptability to frost as a results the requirement of water is reduced Enhanced UV-B radiation decreased shoots height, leaf area, and increased specific leaf mass and thickness of palisade and sponge layer as well as APX activity and UV-B absorbing compounds in both species. Whereas, leaf numbers, ABA content, soluble protein and CAT activity showed no differences to enhanced UV-B radiation. Interspecific differences were also observed. Compared with P. kangdingensis, P. cathayana showed lower shoot height and smaller leaf area, higher SOD activity. Besides, variation in UV-B absorbing compounds was found. These differences suggested that P. kangdingensis from high elevation (3500 m) was more tolerant to enhanced UV-B radiation than P. cathayana from low elevation (1500 m). Compared with morphological and physiological changes induced by enhanced UV-B radiation under well-watered conditions, drought exacerbated or decreased these changes. However, these effects vary with parameters measured. When two stresses applied together, shoot height and leaf area further decreased while leaf thickness further increased. Under well-watered conditions, enhanced UV-B radiation significantly increased proline content, but such effect was not observed under drought conditions. The effect of drought on enhanced UV-B radiation was related to species. For example, drought reduced the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll in P. kangdingensis, and additive effects in shoot height and leaf area and interactive effect CAT activity were observed. In contrast, for P. cathayana drought significantly exacerbated the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll; there were noticeable interaction in shoot height, leaf area and specific leaf mass. As far as long-term WUE is concerned, it was increased by enhanced UV-B radiation under well-watered conditions in both species. While different effect was observed between two species in combination of two stresses. Long-term water use efficiency was further increased in P. cathayana whereas the effect was less significant in P. kangdingensis. 3. The field experiment showed that growth and physiological traits of poplars were affected by nutrition and enhanced UV-B radiation. Fertilization significantly increased leaf area, biomass and SOD activity, reduced Ascorbic acid concentration. There was interspecific difference in response to fertilization. For P. kangdingensis, fertilization significantly increased leaf width, leaf length and photosynthetic pigments content while net photosynthetic rate and stomatal conductance, intercellular CO2 concentration were significantly decreased. However, for P. cathayana, these parameters were unaffected except the increase of SOD, GPX and APX activity. From above, it could concluded that P. kangdingensis from high elevation was more affected by fertilization than P. cathayana, This difference was due to adaptation to local environment., The low temperature and moisture where P. kangdingensis was collected can not provided optimum to decompose roots and litter fall as a result the nutrition in soil was poor. Exposed to enhanced UV-B radiation, for both species UV-B absorbing compounds and GPX activity were significantly increased while proline, MDA, soluble protein, chlorophyll, carotenoids were not affected. Different responses were also observed between the two species. Enhanced UV-B radiation caused significant decreases in leaf area, biomass, net photosynthetic rate and increase in APX activity and long-term WUE in P. cathayana but not in P. kangdingensis. In addition, activity in antioxidant enzymes was much higher in P. kangdingensis than in P. cathayana. In the experiment fertilization affected responses of cuttings to enhanced UV-B radiation, but it concern species and parameters measured. Long-term WUE in P. cathayana and chlorophyll in P. kangdingensis were significantly increased by enhanced UV-B radiation under non-fertilization treatments while the increase was not found under fertilization treatment. In contrast, under no fertilization treatment enhanced UV-B radiation did not affected GPX and APX activity in P. cathayana and GPX in P. kangdingensis while significant increase appeared after application of fertilization. Similar effect of enhanced UV-B radiation on intercellular CO2 concentration in P. kangdingensis was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

辐射传输研究是贯穿森林生态系统的纽带,太阳辐射为植物的生长发育提供光合能量、适宜的环境温度以及发育信息。一方面,气候变化使到达地面辐射能的质和量发生变化,影响到植被的生长发育,改变森林的结构,而森林结构的变化又会影响林冠内辐射能的分配和质量,这些变化会进一步影响到林下土壤温度,改变森林根系活性以及土壤营养转化的效率;连锁反应的结果有可能会使森林生态系统的生产力发生变化,改变碳素和氮素源库的调节方向,从而反馈影响地球气候系统。另一方面,人类作为生态系统的成员,必然需要森林生态系统为其提供更多的原材料和更好的生态服务功能,如何实现这些目标,就需要人类适度调整干预方式和频度,达到预期的目的。本文在建立适合于川西亚高山森林的叶面积测量技术、光照辐射模型和土壤温度变化模型的基础上,对川西亚高山地带森林生态系统的辐射传输特征进行了分析,并从森林结构的角度探讨了林分内的辐射分布以及对土壤温度的影响。主要成果如下: 1. 提出了一种照相法测量叶面积的方法。通过对摆放在平面上的叶片照相,利用投影变化,把非正射图像转化为正射图像,然后经过计算机图像处理得到每一片叶片的面积、周长、长度、宽度等信息。这种方法可使用户以任意方向和距离拍摄处于平面上的叶片,能同时处理大量的叶片,适于野外离体或活体叶片测量。叶片面积分辨率可调,分辨率可以与常用的激光叶面积仪相近甚至更高,而且叶片图像可以存档查询。 2. 提出一种模拟林内光照变化的模型。利用林冠半球照片,记录视点以上半球内的林冠构件空间分布,作为林冠子模型;天空辐射子模型采用国际照明委员会(CIE)的标准晴天和阴天以及插值模型。该模型能够模拟林下某一位点处的实时光斑变化。 3. 提出一种土壤温度变化模型。把土壤视为具有容量和阻力性质的结构,利用电阻和电容器件构建土壤能量分布模型。外界太阳辐射能经过植被以及其它一些能量分配器后进入土壤,其中有一部分转化为土壤势能,即土壤温度。土壤温度的变化类似于电池的充放电过程。在已知模型参数的情况下,可以从太阳辐射计算土壤温度的变化。在模型参数未知的情况下,通过输入和输出值推算模型的参数,而模型参数中的时间常数与土壤组成和含水量有关,这样就可以知道土壤水分的变化情况。 4. 从王朗亚高山森林典型样地林分结构的测量获得林地三维结构图、树冠形态、叶面积密度等参数,这些参数输入到Brunner (1998)开发的tRAYci 模型中计算出一段时间内林分任意位置处的光照值。与林下辐射计测量值以及半球照片计算结果的比较,该模型基本上能够满足对林分光环境了解的要求。 5. 从川西亚高山森林生产力的角度,探讨了森林生产力研究的方法以及川西地区的研究历史和成果,发现了其中的一些规律和问题,特别是在叶面积测量上,还没有使用标准的叶面积指数定义。综合来看,川西地区针叶林叶面积指数(单位土地面积上植物冠层总叶面积的一半) 应在4-5 之间。降雨丰富的华西雨屏带是川西地区森林生产力最高的地区,而向西北森林生产力逐渐降低。川西地区云冷杉林森林生产力平均约为600 gDM m-2 a-1,但是根据辐射能计算的潜在生产力则达到1800 gDM m-2 a-1。实际与潜在森林生产力的巨大差异说明其它因子对生产力的影响。 6. 王朗亚高山3 个典型森林林分中,白桦林样地(BF) 林下草本以糙野青茅、牛至、紫菀等喜阳性物种为主,林下透光度较高;冷杉林样地(FF) 林下透光度最低,以喜阴性物种水金凤、蟹甲草、囊瓣芹等为主;而云杉林样地(SF)林分林龄最大,林下透光度介于冷杉林和白桦林之间,草本层仍然以喜阴性物种东方草莓、紫花碎米芥、酢浆草等为主。冷杉林和云杉林的灌木层也很丰富,卫矛属、五加属、茶藨子属、忍冬属植物很丰富,而在白桦林则以栒摘要子属、榛子属、鹅耳枥属等植物为主。藓类植物在云杉林中最丰富,并且形成毯状层,其它两个林分则很稀少。3 个样地林分结构与林下光环境有很强的相关性,从光环境特征可以在一定程度上推测林分的结构。各样地单纯从乔木层材积推算的NPP 排列顺序为BF>FF>SF,与林下辐射透射率和林分年龄的顺序相同,暗示辐射对群落演替过程的驱动作用。 7. 用半球照相法测得BF、FF 和SF 3 个样地的有效叶面积指数以SF 样地最高,BF 最低。如果考虑针叶树叶片在小枝上的丛聚分布,利用北方针叶林的数值进行校正,则SF 样地LAI 显著增加(达到89%),其它样地的LAI 基本不变甚至有所下降。校正后的数值与文献中地面测量的结果较相近,说明在使用半球照相法测量川西亚高山针叶林LAI 时必须加以校正。 8. 在3 个样地中,白桦、岷江冷杉和方枝柏种群为丛聚分布,紫果云杉在FF和SF 样地中基本上为随机分布。3 个物种出现丛聚分布的最短距离约为2m,在最短距离以内则为随机分布。最短距离可能与树冠大小有关,种子传播特征以及对光照的需求状况可能是造成这种分布格局类型的原因。 Radiative transfer plays a key role in forest ecosystems. Solar radiation providesenergy for photosynthesis, appropriate ambient temperature and development informationfor plants. However, quality and quantity of radiation reaching land surface are affected byweather and subsequently influence the growth and development of plants, which in turnchanges the budget of radiation in forest. Soil temperature changes with the variation ofradiation under forest canopy and influences the activity of roots and rate of nutrientturnover. Thus, any changes of radiation will induce chain reactions in the entireecosystem and display in the value of net primary productivity which will possibly shiftthe relationship between carbon source and sink at local or regional scale and feed back tothe global climate system. On the other hand, as a component of ecosystems, humanbeings of course need to demand more materials and better service from ecosystems. Forthese purpose, man must adapt their pattern and frequency of interference to ecosystems.This paper aims to research on the canopy structure, the radiation distribution and theirinfluence on soil temperature from the process of radiative transfer in subalpine forestecosystem of western Sichuan. The main results are: 1 Present a new photogrammetric method for leaf area. The main idea is to convertnon-vertically taken images of planar leaves to orthoimages through projectivetransformation. The resultant images are used to get leaf morphological parametersthrough image processing. This method enables users to take photos at almost anyorientation and distance if only the leaves are placed on same plane, and to processlarge quantity of leaves in a short time, which is suitable for field measurement. Theresolution of leaf area is adjustable to fit for special requirement. 2 A model using hemispherical photos combining with solar tracks and radiation courseis provided to simulate light variation in forest. The hemispherical photos of canopyrecord the real spatial distribution of each element of plants viewed from a point. Skyradiance is simulated with CIE standard clear sky or cloudy sky model. This modelcan be used to simulate real time light variation under canopy. 3 Present a soil temperature model. Soil could be regarded as a body of resistor andcapacitor. Some of the budget of solar radiation in soil body is transformed into soilpotential energy, the soil temperature. Variation of soil temperature is driven by solarradiation, vegetation, soil properties, etc. This model has two parameters, one of whichis time constant and is related to soil water content. The inversed model can be used tosimulate the variation of soil water. 4 By using model tRAYci developed by Brunner (1998), the 3-D distribution of light inthree subalpine forest stands of Wanglang Nature Reserve has been simulated andvalidated with value of radiometers in these stands. This model can basically satisfythe need for understanding light regimes of these stands. 5 Present some principles and questions of NPP (net primary of productivity) researchesin western Sichuan. The standard leaf area index (LAI) defined by Chen and Black(1997) has not been used in this region. Total leaf area and projected leaf area indexare still used in NPP researches which may differ around 1-fold in magnitude. Thestandard LAI which is a half of total leaf area above unit land area should be between4 and 5 for typical subalpine coniferous forest of western Sichuan concluded fromliteratures. The maximum forest NPP occurs in West China rain belt and decreasesnorthwestwards. Average NPP of spruce-fir forest in western Sichuan is about600gDM m-2 a-1, which is below the potential NPP of 1800gDM m-2 a-1 based onmeasured radiation in this region. The significant difference between potential and realNPP suggests that other factors influence the growth of stands. 6 In the three subalpine forest stands of Wanglang Nature Reserve, herbage layer ofAbstractbirch stand (BF) with age of 40 is dominated by heliophytes of Deyeuxia scabrescens,Origanum vulgare, Aster tongoloa etc.. However, both of the other two stands aredominated by shade tolerent species, such as Impatiens noli-tangere, Impatiensdicentra, Cacalia deltophylla and Pternopetalum tanakae etc. in fir stand (FF) withage of 180 and Fragaria orientalis, Cardamine tangutorum and Oxalis corniculata etc.in spruce stand (SF) with age of 330. Shrub species in the latter two stands arerelatively rich, typical dominant genera being Euonymus, Acanthopanax, Ribes andLonicera. Birch stand has relatively sparse shrubs dominated by genera of Cotoneaster,Corylus and Carpinus. Mosses are significant only in spruce stand. The canopystructure controls the light regime of stand, which influence the composition of herblayers beneath the canopy. This light regime-community structure relationship can beused to infer the herb community from canopy structure. The NPP derived from timbervolume of arbor layer of the three stands decreases from BF to SF, which is in thesame order of transmitted total radiation under canopy and age of these stands,suggesting the driving effect of radiation in the succession of community. 7 The highest effective LAI of the three stands obtained by hemispherical photos is inplot SF and lowest in plot BF. After rectification of the clumping effect of leaves onshoot, the real LAI in plot SF increases significantly (89%) and approximate to theaverage LAI of coniferous forest in western Sichuan. Therefore, the LAI obtainedfrom hemispherical photos needs rectification for clumping effect. 8 Spatial distribution pattern for Betula platyphylla, Abies faxoniana and Sabinasaltuaria is clumpy, but Picea purpurea almost random in plot FF and SF. The shortestdistance for clumpy distribution for Betula platyphylla and Sabina saltuaria is 1.5m,and 2m for Abies faxoniana. And random pattern for these trees is exhibited within thisrange which almost coincides with the diameter of crown. Seed dispersalcharacteristics and light requirement may be the reason for different spatial pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

青杨组(Section Tacamahaca Spach)杨树是我国重要的乡土经济树种,目前对其分子遗传变异和系统进化的研究还很少,尤其是在青杨组杨树遗传资源极为丰富的川西地区,杨树的分子进化及亲缘关系的研究极为缺乏,非常不利于该树种遗传资源的开发和利用。本研究从川西地区收集了青杨(Populus cathayana)、青海杨(P. prezewalskii)、滇杨(P. yunnanensis)、康定杨(P. kangdingensis)、西南杨(P. schneideri)、小叶杨(P.simonii)和三脉青杨(P. trinervis)这7 个青杨组树种的10 个群体,利用多种分子标记手段对其种间的亲缘关系进行比较,并结合形态和地史资料进行了全面的研究和评价,得到了如下的主要研究结果: 1. SSR 和ISSR 位点变异丰富。通过10 对引物对50 个杨树个体的DNA 样品进行了SSR 分析,所有位点展现了丰富的群体间和种间的多态性,多态位点率达到了100%,每位点的等位基因数变化范围为5 ~ 17,平均为11.9 个;通过11 条ISSR 随机引物对供试的混合DNA 样品进行分析,共检测到130 个标记,其中多态性标记为119 个,多态百分率为91.5%。研究认为,SSR 单个标记能展现高水平信息,而ISSR 单个引物能探测更多数量多态性。通过两个标记的遗传距离、聚类图和PCA 分析,表明:同一种内不同群体间的同源性最高;康定杨和西南杨有较近的亲缘关系;小叶杨和三脉青杨聚合在一起,显示了其相互较近的亲缘关系;滇杨与其它杨树种可能存在着较远的亲缘关系。 2. 采用4 对选择性引物对7 个青杨组杨树种10 个群体进行AFLP 分析,总共扩增出284 个位点,其中200 个位点显示出了多态性,多态位点百分比为70.4%,平均多态带为50 条。TE-AFLP 的分析总共扩增出192 个位点,其中139 个位点显示出了多态性,多态位点百分比为72.4%,平均多态带为34.7 条。比较的结果表明AFLP、TE-AFLP 的遗传信息含量比较接近,略小于ISSR,大约仅为SSR 的1/3;但这两个基于AFLP 的标记系统的信息探察能力也远大于ISSR 和SSR 标记系统。这两个分子标记的聚类结果,显示小叶杨、三脉青杨和滇杨三个种聚为一组,其中小叶杨与三脉青杨的亲缘关系更近;其它几个杨树种聚为一类,西南杨与青杨表现出较近的亲缘关系。 3. 所有7 对cpSSR 引物中,仅有4 个叶绿体位点在种间具有多态性,而在种内群体中并不具有多态性,共检测出13 个条带,组合成了4 种不同的单倍型;对于cpDNA的5 对引物,共检测出了73 条酶切片段,其中52 条是多态带,组合成了9 种不同的单倍型;而5 对mtDNA 通用引物未能检测出多态性的条带,表现出线粒体的保守性。叶绿体的聚类分析认为,小叶杨、三脉青杨和滇杨有较近的母性起源,且依次聚合;其余四种杨树聚为一类,并且康定杨与西南杨表现出最近的亲缘关系,并依次与青杨和青海杨聚合。 4. 根据本文的分子数据,结合形态和生境分布资料分析认为:青杨组杨树种内群体间的遗传变异程度是小于种间的遗传差异,显示了与传统分类一致的结果;三脉青杨和小叶杨有很近的亲缘关系,可能拥有相同的祖先类群;滇杨与小叶杨和三脉青杨之间具有一定的亲缘关系,特别是在其母性祖先的起源上有着一定的同源性;西南杨与青杨和康定杨均保持着较近的亲缘关系,且有可能是这两个种原始祖先杂交后所形成的。 Although western Sichuan is regarded as a natural distribution and variation center forthe Section Tacahamaca of the Populus species in China, little is currently known about themajority of poplar species occurring in this region. In the present study, molecular data wereutilized to determine the genetic relationships among Populus species in Section Tacamahacain western Sichuan including P. cathayana, P. prezewalskii, P. yunnanensis, P. kangdingensis,P. schneideri, P. simonii and P.trinervis. The results are as fellows: 1. The genetic variation at SSR and ISSR loci was abundant. All the 10 SSR loci werepolymorphic, and the number of alleles per locus varied from 5 to 17 with a mean valueequaling 11.9. Based on the 11 ISSR primers, 130 clear and reproducible DNA fragmentswere generated, of which 119 (91.5%) were polymorphic. Our results reveal that single SSRlocus can present more genetic information, while more polymorphic bands can be detectedby single ISSR primer. Moreover, the genetic distance, cluster and PCA analysisdemonstrated that: a close relationship among accessions of the same species and suggestedmonophyly in P. przewalskii and P. cathayana; P. schneideri is genetically highly similar to P.kangdingensis; P. trinervis and P. simonii have a close genetic affinity; P. yunnanensis isdistinct from the other species. 2. Genetic relationships of poplar species in Section Tacamahaca from western Sichuanwere evaluated by means of AFLP and TE-AFLP. For four AFLP primer combinations, atotal of 284 bands were obtained of which 200 (70.4%) were polymorphic with the average of50 polymorphic bands. For four TE-AFLP primer combinations, a total of 192 band wereobtained of which 139 (72.4%) were polymorphic with the average of 34.7 polymorphicbands. Our results indicate that the genetic information of AFLP is similar to that ofTE-AFLP, and little less than that of ISSR, but only about 1/3 of that of SSR. However, theability of information detection of the two AFLP-based markers is much higher than that ofISSR and SSR. In addition, the cluster analysis of AFLP, TE-AFLP and combined data revealthat: P. yunnanensis, P. trinervis and P. simonii clustered together, and P. trinervis and P.simonii showed more closed affinity; the other four poplar species clustered together, P.cathayana and P. schneideri showed more closed origin especially. 3. The cpSSR analysis for seven Populus species belonging to the Section Tacamahaca.Four out of the seven analyzed chloroplast loci were polymorphic, whereas none of the lociwere polymorphic across the accessions within a species. 13 bands and 4 different kinds ofhaplotypes were reduced. Based on 5 pairs of cpDNA primers, 73 fragments (52 polymorphic)and 9 kinds of haplotypes were produced. However, none of the polymorphic was detected bythe 5 mtDNA primer pairs, revealing conservation of mtDNA region. The cluster analysis ofcpDNA revealed that: similar maternal phylogeny among P. yunnanensis, P. trinervis and P.simonii; the other four species clustered together, P. schneideri and P. kangdingensis showedmore closed maternal lineage especially. 4. Our molecular data, morphological characters and nature habitat revealed that: sameto the traditional taxonomy assignment, genetic variation within a same Populus species islower than that among Populus species in Section Tacamahaca; P. yunnanensis may share itschloroplast ancestor with P. trinervis and P. simonii; moreover, sister genetic relationship of P.trinervis and P. simonii indicated their similar origin; P. schneideri clustered with P.kangdingensis and P. cathayana, respectively, and may have derived from an ancienthybridization event involving the ancestors of the two species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

岷江柏(Cupressus chenggiana S. Y. Hu)是我国川甘地区特有的珍稀濒危乔木,一般生长在干旱的河谷区,在涵养水源和保护水 土等方面起着重要的作用。本文选择4个岷江柏种群,采用了野外调查和室内实验相结合的研究方法,调查岷江柏种群结实状况, 分析种子和球果形态特征,阐明种子发芽的基本特征,研究岷江柏种子贮藏过程中几个生理指标的动态变化特点,目的是为岷江柏 种苗繁育、自然更新能力评估以及珍稀濒危机制分析提供理论依据。研究得出如下结论:1.岷江柏球果呈椭球形,长为1.5~ 2.2cm,宽为1.5~1.9cm,质量为1.7~4.2g,球果鳞片数量为8~11片,球果内种子数量一般在40~70粒。岷江柏种子为椭圆形,长 为3.58~4.02mm,宽为3.10~3.15mm,厚为0.96~1.11mm,千粒重为3.1~3.5g。岷江柏的结实率很低,并且有显著的地理差异和 大小年差异。2. 岷江柏种子发芽温度范围是5℃~30℃,其中种子的适宜发芽温度范围是10℃~25℃。种子最适发芽温度随着贮藏 时间的增加而变化。在适宜温度范围内,种子发芽周期为20d。温度对种子的发芽势和T50有显著影响,对种子发芽率没有显著影响 ;光照有利于种子发芽;岷江柏种子的发芽特征是岷江柏保护种子资源、防止物种濒危的一种环境适应,有助于岷江柏种子提高发 芽率和幼苗的存活率。岷江柏种子是一种耐贮藏的正常性种子,在短期贮藏过程中,贮藏温度和种子含水量对于种子生理指标和种 子发芽没有显著影响。3. 岷江柏种子在短期贮藏过程中,千粒重没有显著变化;含水量都经历了先下降,再稳定的过程;粗脂肪 含量和可溶性糖含量逐渐降低;可溶性蛋白含量和丙二醛含量逐渐增加;脯氨酸含量在贮藏1~7个月时变化差异不明显,但是贮藏 7~10个月后显著增加。岷江柏种子的各个生理指标之间的相关性差异不显著。4. 岷江柏球果和种子的形态特征存在显著的地理差 异。岷江柏种子的发芽能力的地理性差异不大,种群间差异不大。岷江柏种群的地理差异由种群特征、生境特征和气候特征共同决 定。5. 在岷江柏的人工繁育中,对于刚刚采集的种子,发芽温度在15℃~25℃比较适合,其中以25℃最佳;而对于短期贮藏(4~ 10个月)后的种子,发芽温度在10℃~25℃均可,以15℃~20℃为最佳。野外播种的最适时间为4~6月,6~9月的间歇性干旱和降 水波动可能是限制岷江柏自然更新的因素之一。在短期贮藏过程中,种子可以采用常规室温贮藏,可以节约成本。Cupressus chenggiana is a specific and endangered plant in Sichuan and Gansu provinces of China, and it usually grows in dry valley and plays an important role in water supply and soil and water conservation in the dry valley of alpine and canyon region of southwest China. The research selected four Cupressus chenggiana populations and used the methods of the field investigation and the lab experiments. The fruiting characters of Cupressus chenggiana populations, the morphological characters of seeds and cones, the germination characters of seeds and the store physiological dymatics of several factors of seeds have been studied in order to give some theoretical advices on the artificial propagation and the ability of natural regeneration and the endangered principle of Cupressus chenggiana in the paper. The main results may be clarified as follows: 1. The cones of Cupressus chenggiana are ellipsoidal, length ranged from 1.5 to 2.2cm, with ranged from 1.5 to 1.9 cm, weight ranged from 1.7 to 4.2g, the number of cone squama ranged from 8 to 11, and the seed number of per cone ranged from 40 to 70. The seeds of Cupressus chenggiana are elliptical, length ranged from 3.58 to 4.02 mm, width ranged from 3.10 to 3.15 mm, thickness ranged from 0.96 to 1.11 mm, and the weight of 1000 seeds ranged from 3.1 to 3.5g. The fruiting rate of Cupressus chenggiana is very low, and the fruiting period of Cupressus chenggiana has the geographical differences and the big or small year differences. 2. Seed germination temperature is between 5℃ and 30℃, while the suited temperature is between 10℃ and 25℃. The optimum temperature of seed germination will change as the store time of seeds changes logner. The cycle of seed germination can persist 20 days in the range of the suited temperature. The germination temperatures have significant influences on the germination potential and T50, but have no significant infuluences on the germination rate. The photoperiod is in favor of seed germination. The characters of Cupressus chenggiana seed germination represent a kind of environmental adaptability to protect the seed sources and endangered species, and it can give help to increase the germination rate of seeds and the livability of seedings. The seeds of Cupressus chenggiana are a kind of orthodox seeds that can endure the long time storage. In the short time storage, the store temperatures and the moisture contents of seeds have no significant infuluences on the physiological factors and the germination of seeds, but the store time has significant influences on the physiological factors of seeds. 3. In the short store course of Cupressus chenggianna seeds, the 1000 seed weight has no significant variation; The moisture content descends at the beginning of the storage, but has no significant variation later; The crude fat content and the soluble sugar content descend gradually; The soluble protein content and MDA content increase gradually; The praline content has no significant variation after 1~7 months storage, but increase significantly after 7~10 months storage. The correlations of different physiological factors are not significant. 4. The morphological characters of cones and seeds of four populations exist significant differences. The germination of Cupressus chenggiana seeds has no significant geographical variation. The geographical variation of Cupressus chenggiana populations can be ascribed to the population characters, climate and environment. 5. In the course of artificial propagation of Cupressus chenggiana, it is favored that the germination temperature of newly collected seeds is between 15℃ and 25℃, while the optimum temperature is 25℃. After the short storage ranged from 4 months to 10 months, it is favored that the germination temperature is between 10℃ and 25℃, while the optimum temperature is ranged from 15℃ to 20℃. The field sowing optimum time is between April and June, and the interval drought and fallrain fluctuation between July and September may be one of the reasons that restrict natural regeneration of Cupressus chenggiana. In the short storage, seeds can be stored in the condition of room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

课题组在不断地创制新的同源四倍体材料的同时,连续多年以提高结实率为目的培育、筛选自交系材料,已获得自交繁殖十二年的高代自交系材料。相对于诱导创制初期,材料表现出的结实率低,同种系单株间的差异较大;高代材料已表现出较显著的结实率提升和较一致的农艺性状表型。 本实验选取课题组多年培育的同源四倍体水稻高代自交系材料,通过形态学、农艺性状和细胞遗传学比较,研究水稻同源四倍体与二倍体之间的异同。结果显示,所有同源四倍体材料的染色体组成均为2N=4X=48,花粉母细胞(PMC)减数分裂行为较正常,99%以上的染色体都能在减数分裂中期I(MI)发生联会、配对,形成四价体和二价体,这与理论染色体组构成相符。在减数分裂过程中,结实率较高的材料染色体异常现象较少而结实率较低的材料染色体异常现象较严重。统计分析表明,二价体和四价体的比例对结实率没有显著影响,但是三价体的数目对结实率有一定影响。这一结果表明了结实率和细胞减数分裂行为可能存在相关性,同源四倍体的减数分裂行为为筛选高结实率的同源四倍体种系提供了依据。 然后,对同源四倍体水稻高代自交系材料进行农艺性状和品质性状的统计与分析。主要针对结实率、每穗实粒数、有效分蘖和穗长等主要农艺性状,以及直链淀粉含量这一重要的品质性状进行统计。将统计结果与1996年诱导加倍的初代材料的数据相对比分析,结果显示所有材料经过多代选育培养,其农艺性状已经有了较显著的提高,同时同源四倍体材料的农艺性状稳定性也有了较显著的提升。如结实率的提高幅度较大,所有材料的平均结实率均显著高于加倍初代,而同种材料不同单株间的结实率差异也显著地减少,变异系数(CV)的平均值由1996年的41.15%减少到了2008年的28.81%。其他重要农艺性状也有不同程度的改良,种内变异系数也相应地降低。此外,实验测量了同源四倍体材料和来源二倍体材料的直链淀粉含量。分析结果显示,部分材料的直链淀粉含量与二倍体亲本产生了较显著的差异,这可能是诱导加倍过程中的遗传变异造成的;同源四倍体材料的种内变异系数(CV)平均值由1996年的6%下降到了2008年的3.88%,显示出在品质性状方面,同源四倍体材料的遗传稳定性也有较显著的增加。同源四倍体材料农艺性状经过多年的选育,表现出一定的提升,同时,经过多年自交纯化,所有材料种系内的性状差异逐渐缩小,说明同源四倍体水稻的遗传稳定性随着自交纯化而增强,这为同源四倍体水稻的进一步选育打下了良好的基础。 最后,通过测量连续两年的自交系材料的遗传多态性,分析材料间遗传差异和种群遗传结构,深入研究连续两代材料间的遗传差异,研究同源四倍体水稻与二倍体材料遗传稳定性之间的差异。实验采用18对SSR微卫星标记对连续两代15个材料,共94份样本进行差异分析。通过扩增条带长度多态性分析,计算不同材料以及同种材料不同世代间的遗传距离,构建同源四倍体和二倍体水稻的分子指纹库,并绘制聚类图。结果显示,同源四倍体和二倍体不同材料间的遗传差异比较大,遗传距离处于0.4757至0.2816之间;而相同品种不同世代材料间的遗传差异较小,但也表现出一定的遗传差异。同种同源四倍体材料不同世代间的遗传差异比二倍体材料更大,两代四倍体材料间遗传距离处于0.1359至0.0485之间;而两代二倍体材料间的遗传距离处于均小于0.0388。结果表明,同源四倍体水稻高代材料具有一定的遗传稳定性,但与来源二倍体材料相比,其世代间的遗传变异性仍然较强。这种结果说明,经过多代的自交纯化培育,同源四倍体水稻材料能够建立起相对稳定的遗传结构,同时,其强于二倍体亲本的变异性有能够为新品种的选育,农艺性状、品质性状的改良提供一定的遗传基础。此外,分析结果表明通过分子标记辅助检验,水稻材料间的遗传多态性能够有效地区分不同的品种,这为水稻品种的分子鉴定提供了一定的依据。 本研究从细胞学鉴定,农艺性状统计分析以及分子标记辅助聚类分析多方面地对同源四倍体水稻高代系进行了研究,对探究同源四倍体水稻的遗传规律,进一步揭示其遗传特性、农艺性状的遗传构成,为进一步选育优质的多倍体水稻提供了一定的理论依据。 This group insists on creating new Autotetraploid Rice (Oryza sativa L.) materials, while improving the seed-setting of them for many years, cultivated and selected the inbred line materials, has obtained the high generation inbred lines after twelve years cultivation. Compared to the early induced materials, which shown the low seed setting, and the large difference between the different plants in the same germ-line; the high generation materials have shown significant improvement in seed setting and more uniform phenotype agronomic traits. The autotetraploid rice high generation inbred lines material, which has been cultivated for more than 12 years, was chose in this experiment. The similarities and differences between autotetraploid and diploid rice was studied through morphological, agronomic and cytogenetic ways. The results showed that all the chromosome of autotetraploid materials are composed of 2N=4X=48, the pollen mother cells (PMC) meiosis behavior is normal, more than 99% chromosomes in metaphase I(MI) were federated and paired to form tetravalents or bivalents, which constitutes a consistent theory of genome. In the meiosis process, the material with a higher seed setting showed less chromosome abnormal than the material whose seed setting is lower. However, statistical analysis showed that the bivalent and tetravalent rate had no significant impact on seed setting, but the number of trivalent had a certain impact on seed setting. The result shows that the seed setting may be related to the meiosis behavior, which provides a basis to cultivate new autotetraploid germ line with high seed setting through the meiotic behavior. Furthermore, the agronomic and quality traits of autotetraploid rice high generation inbred material were statistically analyzed. The statistically analysis was focused on major agronomic traits such as: seed setting, grains per panicle, effective tillers and panicle length, as well as the important quality trait amylose content. The statistic data was compared with the data in 1996, when the first induced generation of autotetraploid material, and the result shows that after a multi-generation breeding, the agronomic traits has been significantly improved in all the materials, while the stability of agronomic traits also significant upgraded. For instant, the seed setting increased significantly, the average seed setting of all materials was significantly higher than the first induced generation, and the differences between different plants in the same species also significantly reduced, the average of the coefficient of variation (CV) was reduced from 41.15% in 1996 to 28.81% in 2008. Other important agronomic traits had improved in different degrees; the coefficient of variation within species is also reduced accordingly. In addition, the amylose content of autotetraploid and diploid materials was measured in this experiment. The results shows that the amylose content of some of the material differed from diploid parents significantly, it may caused by the genetic change during the inducing, autotetraploid materials intra-specific coefficient of variation (CV) average reduced from 6% in 1996 to 3.88% in 2008, shows that this is a significant increase of quality traits stability in autotetraploid rice. Agronomic traits of autotetraploid material shows some improvement after years of breeding, at the same time, after years of purification, all material within the germ-line gradually narrow the differences in traits indicates that autotetraploid rice genetic stability was enhanced, which laid a good foundation for the further autotetraploid rice breeding. Finally, this experiment studied the genetic differences between materials of two generations and researched the difference of genetic stability between diploid and autotetraploid rice materials through investigating the genetic polymorphism, genetic differences between materials and population genetic structure of inbred line materials of two consecutive years.18 pairs of SSR microsatellite markers for 15 materials of two generations were used in this experiment, and the total of 94 samples were analyzed. Through the amplification length polymorphism analysis of different materials and materials in different generations, the genetic distance between materials and generations was analyzed, a diploid and autotetraploid rice molecular fingerprint database and map rendering cluster were constructed. The result shows that the genetic distance is between 0.4757 to 0.2816 among different autotetraploid and diploid materials; the genetic distance between different generations of same species was less, but also shows a certain degree of genetic differences. The inter-generational genetic differences of autotetraploid materials were greater than of the diploid materials, which are 0.1359 to 0.0485 as the genetic distance; comparing with the 0.0388 of diploid materials. The result shows that high generation inbred autotetraploid rice material has a certain genetic stability, but the genetic variation between generations is still strong comparing with the source diploid materials. It indicates that, after many generations of purification cultivation, autotetraploid rice materials established a relatively stable genetic structure, at the same time, stronger variability than its diploid parents are useful in the breeding of new varieties, provides a genetic foundation to the agronomic and quality traits improvement. In addition, the analysis result shows that the through the molecular marker-assisted testing, rice genetic polymorphism between materials can effectively distinguish different species, provides a certain basis for molecular identification of varieties of rice. A series of investigation such as cytological identification, statistical analysis of agronomic traits, molecular marker-assisted cluster analysis was applied in this experiment to research genetic pattern of autotetraploid rice high generation inbred lines, revealed the genetic characteristics and the genetic composition of agronomic traits, provides a theoretical basis for the further selection of high quality autotetraploid rice.