954 resultados para MNDA receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O-antigenic repeating units of lipopolysaccharides from Salmonella serogroups A, B, and D1 serve as receptors for the phage P22 tailspike protein, which also has receptor destroying endoglycosidase (endorhamnosidase) activity, integrating the functions of both hemagglutinin and neuraminidase in influenza virus. Crystal structures of the tailspike protein in complex with oligosaccharides, comprising two O-antigenic repeating units from Salmonella typhimurium, Salmonella enteritidis, and Salmonella typhi 253Ty were determined at 1.8 A resolution. The active-site topology with Asp-392, Asp-395, and Glu-359 as catalytic residues was identified. Kinetics of binding and cleavage suggest a role of the receptor destroying endorhamnosidase activity primarily for detachment of newly assembled phages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostaglandin E2 (PGE2) is a potent lipid molecule with complex proinflammatory and immunoregulatory properties. PGE2 can shape the immune response by stimulating the production of IgE antibody by B lymphocytes and the synthesis of T-helper type 2 cytokines [e.g., interleukin (IL)-4, IL-10], while inhibiting production of Th1 cytokines (e.g., interferon-gamma, IL-12). It is unknown what type of receptor binds PGE2 and modulates these responses. Recent analyses in nonhematopoietic cells have identified six PGE2 receptors (EP1, EP2, EP3 alpha, EP3 beta, EP3 gamma, and EP4). This investigation examines quiescent B lymphocytes and reports that these cells express mRNA encoding EP1, EP2, EP3 beta, and EP4 receptors. The immunoregulatory functions of each receptor were investigated using small molecule agonists that preferentially bind EP receptor subtypes. Unlike agonists for EP1 and EP3, agonists that bound EP2 or EP2 and EP4 receptors strongly inhibited expression of class II major histocompatibility complex and CD23 and blocked enlargement of mouse B lymphocytes stimulated with IL-4 and/or lipopolysaccharide. PGE2 promotes differentiation and synergistically enhances IL-4 and lipopolysaccharide-driven B-cell immunoglobulin class switching to IgE. Agonists that bound EP2 or EP2 and EP4 receptors also strongly stimulated class switching to IgE. Experiments employing inhibitors of cAMP metabolism demonstrate that the mechanism by which EP2 and EP4 receptors regulate B lymphocyte activity requires elevation of cAMP. In conclusion, these data suggest that antagonists to EP2 and EP4 receptors will be important for diminishing allergic and IgE-mediated asthmatic responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydial attachment to columnar conjunctival or urogenital epithelial cells is an initial and critical step in the pathogenesis of chlamydial mucosal infections. The chlamydial major outer membrane protein (MOMP) has been implicated as a putative chlamydial cytoadhesin; however, direct evidence supporting this hypothesis has not been reported. The function of MOMP as a cytoadhesin was directly investigated by expressing the protein as a fusion with the Escherichia coli maltose binding protein (MBP-MOMP) and studying its interaction with human epithelial cells. The recombinant MBP-MOMP bound specifically to HeLa cells at 4 degrees C but was not internalized after shifting the temperature to 37 degrees C. The MBP-MOMP competitively inhibited the infectivity of viable chlamydiae for epithelial cells, indicating that the MOMP and intact chlamydiae bind the same host receptor. Heparan sulfate markedly reduced binding of the MBP-MOMP to cells, whereas chondroitin sulfate had no effect on binding. Enzymatic treatment of cells with heparitinase but not chondroitinase inhibited the binding of MBP-MOMP. These same treatments were also shown to reduce the infectivity of chlamydiae for epithelial cells. Mutant cell lines defective in heparan sulfate synthesis but not chondroitin sulfate synthesis showed a marked reduction in the binding of MBP-MOMP and were also less susceptible to infection by chlamydiae. Collectively, these findings provide strong evidence that the MOMP functions as a chlamydial cytoadhesin and that heparan sulfate proteoglycans are the host-cell receptors to which the MOMP binds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine specificity of two Ha255-262-specific, Kk-restricted T cells, and of a unique antibody, pSAN, specific for the same peptide-MHC complex. Independently, a model of the Ha255-262-Kk complex was generated through homology modeling and molecular mechanics refinement. The functional data and the model corroborated each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic sensation requires the conversion of physical stimuli into the depolarization of distal nerve endings. A single cRNA derived from sensory neurons renders Xenopus laevis oocytes mechanosensitive and is found to encode a P2Y1 purinergic receptor. P2Y1 mRNA is concentrated in large-fiber dorsal root ganglion neurons. In contrast, P2X3 mRNA is localized to small-fiber sensory neurons and produces less mechanosensitivity in oocytes. The frequency of touch-induced action potentials from frog sensory nerve fibers is increased by the presence of P2 receptor agonists at the peripheral nerve ending and is decreased by the presence of P2 antagonists. P2X-selective agents do not have these effects. The release of ATP into the extracellular space and the activation of peripheral P2Y1 receptors appear to participate in the generation of sensory action potentials by light touch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we describe the properties of CP-154,526, a potent and selective nonpeptide antagonist of corticotropin (ACTH) releasing factor (CRF) receptors. CP-154,526 binds with high affinity to CRF receptors (Ki < 10 nM) and blocks CRF-stimulated adenylate cyclase activity in membranes prepared from rat cortex and pituitary. Systemically administered CP-154,526 antagonizes the stimulatory effects of exogenous CRF on plasma ACTH, locus coeruleus neuronal firing and startle response amplitude. Potential anxiolytic activity of CP-154,526 was revealed in a fearpotentiated startle paradigm. These data are presented in the context of clinical findings, which suggest that CRF is hypersecreted in certain pathological states. We propose that a CRF antagonist such as CP-154,526 could affirm the role of CRF in certain psychiatric diseases and may be of significant value in the treatment of these disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

gamma-aminobutyric acid type A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. They are constructed from four subunit classes with multiple members: alpha (1-6), beta (1-4), gamma (1-4), and delta (1). The contribution of subunit diversity in determining receptor subcellular targeting was examined in polarized Madin-Darby canine kidney (MDCK) cells. Significant detection of cell surface homomeric receptor expression by a combination of both immunological and electrophysiological methodologies was only found for the beta 3 subunit. Expression of alpha/beta binary combinations resulted in a nonpolarized distribution for alpha 1 beta 1 complexes, but specific basolateral targeting of both alpha 1 beta 2 and alpha 1 beta 3 complexes. The polarized distribution of these alpha/beta complexes was unaffected by the presence of the gamma 2S subunit. Interestingly, delivery of receptors containing the beta 3 subunit to the basolateral domain occurs via the apical surface. These results show that beta subunits can selectively target GABAA receptors to distinct cellular locations. Changes in the spatial and temporal expression of beta-subunit isoforms may therefore provide a mechanism for relocating GABAA receptor function between distinct neuronal domains. Given the critical role of these receptors in mediating synaptic inhibition, the contribution of different beta subunits in GABAA receptor function, may have implications in neuronal development and for receptor localization/clustering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opiates are known to function as immunomodulators, in part by effects on T cells. However, the signal transduction pathways mediating the effects of opiates on T cells are largely undefined. To determine whether pathways that regulate free intracellular calcium ([Ca2+]i) and/or cAMP are affected by opiates acting through delta-type opioid receptors (DORs), a cDNA encoding the neuronal DOR was expressed in a stably transfected Jurkat T-cell line. The DOR agonists, deltorphin and [D-Ala2, D-Leu5]-enkephalin (DADLE), elevated [Ca2+]i, measured by flow cytofluorometry using the calcium-sensitive dye, Fluo-3. At concentrations from 10(-11)-10(-7) M, both agonists increased [Ca2+]i from 60 nM to peak concentrations of 400 nM in a dose-dependent manner within 30 sec (ED50 of approximately 5 x 10(-9) M). Naltrindole, a selective DOR antagonist, abolished the increase in [Ca2+]i, and pretreatment with pertussis toxin was also effective. To assess the role of extracellular calcium, cells were pretreated with EGTA, which reduced the initial deltorphin-induced elevation of [Ca2+]i by more than 50% and eliminated the second phase of calcium mobilization. Additionally, the effect of DADLE on forskolin-stimulated cAMP production was determined. DADLE reduced cAMP production by 70% (IC50 of approximately equal to 10(-11) M), and pertussis toxin inhibited the action of DADLE. Thus, the DOR expressed by a transfected Jurkat T-cell line is positively coupled to pathways leading to calcium mobilization and negatively coupled to adenylate cyclase. These studies identify two pertussis toxin-sensitive, G protein-mediated signaling pathways through which DOR agonists regulate the levels of intracellular messengers that modulate T-cell activation.