992 resultados para MEDIATED TRANSFORMATION
Resumo:
A simple thermal process for the preparation of small Pt nanoparticles is presented, carried out by heating a H-2-PtCl6/3- thiophenemalonic acid aqueous solution. The following treatment of such colloidal Pt solution with Ru( bpy)(3)(2+) causes the assembly of Pt nanoparticles into aggregates. Most importantly, directly placing such aggregates on bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors.
Resumo:
Indium hydroxide, In(OH)(3), nano-microstructures with two kinds of morphology, nanorod bundles (around 500 nm in length and 200 nm in diameter) and caddice spherelike agglomerates (around 750 - 1000 nm in diameter), were successfully prepared by the cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion-mediated hydrothermal process. Calcination of the In(OH)(3) crystals with different morphologies (nanorod bundles and spheres) at 600 degrees C in air yielded In2O3 crystals with the same morphology. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The pH values of microemulsion play an important role in the morphological control of the as-formed In(OH)(3) nano-microstructures from the hydrothermal process. The formation mechanisms for the In( OH) 3 nano- microstructures have been proposed on an aggregation mechanism. In2O3 nanorod bundles and spheres show a similar blue emission peaking around 416 and 439 nm under the 383-nm UV excitation, which is mainly attributed to the oxygen vacancies in the In2O3 nano-microstructures.
Resumo:
We report the multiple morphologies and their transformation of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) in low-alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre-shaped large compound micelles, and to sphere-shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.
Resumo:
Reversible addition-fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain-transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain-transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain-transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 NMR analyses have confirmed the chain-end functionality of the resultant polymer.
Resumo:
We report an easy synthesis of highly branched gold particles through a seed-mediated growth approach in the presence of citrate. The addition of citrate in the growth solution is found to be crucial for the formation of these branched gold particles. Their size can be varied from 47 to 185 nm. The length of the thumb-like branch is estimated to be between about 5 and 20 nm, and changes slightly as the particle size increases. Owing to these obtuse and short branches, their surface plasmon resonance displays a marked red-shift with respect to the normal spherical particles. These branched gold particles exhibit stronger SERS activity than the non-branched ones, which is most likely related to these unique branching features.
Resumo:
Recent studies have focused on the structural features of DNA-lipid assemblies. In this paper, we take methyl green (MG) as a probe molecule to detect the conformational change of DNA molecule induced by dimethyldioctadecylammonium bromide (DDAB) liposomes before the condensation process of DNA begins. DDAB-induced DNA topology changes were investigated by cyclic voltammetry (CV), circular dichroism (CD) and UV-VIS spectrometry. We find that upon binding to DNA, positively charged liposomes induce a conformational transition of DNA molecules from the native B-form to the C motif. Conformational transition in DNA results in the binding modes of MG to DNA, changing and being isolated from DNA to the solution. More stable complexes are formed between DNA and DDAB. That is also proved by the melting study of DNA.
Resumo:
The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La3+ Were studied by chemical phase analysis, X-ray diffraction and infrared spectrometry analysis. The experimental results show that phase transformation reactions of FeCO3, Fe2O3 and BaFe2O4, barium hexaferrite and gamma-Fe2O3 take place in the heat treatment of gel. While the doping lanthanide ion replace barium ion, an equivalent quantity of Fe3+ are reduced to Fe2+ to maintain the charge equilibrium.
Resumo:
Besides the spheres, polyhedral silver nanoclusters were prepared by the polyol process with 3-aminopropyl triethoxysilane (APTES). In the process, APTES acts as not only the stabilizer but also the template.
Resumo:
We initiate a systematic exploration of a natural polymer, chitosan, as a structural material for designing functional layers on electrode surfaces in this work. Au colloid films are organized on chitosan layer by adsorption. We have successfully constructed a multilayer An nanoparticle assembly through electrostatic interactions on chitosan functionalized quartz substrates by the alternate treatment of the substrate with solution of citrate-stabilized gold nanoparticles (negatively charged) and chitosan solution (positively charged). The resulting substrates were characterized by UV-Vis spectrometry, atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) measurements. These assemblies of colloid An multilayer are highly stable, and can be kept for a long time in distilled water, only being removed by scratching or extreme electrochemical conditions.