1000 resultados para M-mode Echocardiography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We draw an explicit connection between the statistical properties of an entangled two-mode continuous variable (CV) resource and the amount of entanglement that can be dynamically transferred to a pair of noninteracting two-level systems. More specifically, we rigorously reformulate entanglement-transfer process by making use of covariance matrix formalism. When the resource state is Gaussian, our method makes the approach to the transfer of quantum correlations much more flexible than in previously considered schemes and allows the straightforward inclusion of the effects of noise affecting the CV system. Moreover, the proposed method reveals that the use of de-Gaussified two-mode states is almost never advantageous for transferring entanglement with respect to the full Gaussian picture, despite the entanglement in the non-Gaussian resource can be much larger than in its Gaussian counterpart. We can thus conclude that the entanglement-transfer map overthrows the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of roughening and functionalization processes involved in modifying the wettability of poly(e-caprolactone) (PCL) after treatment by an atmospheric pressure glow discharge plasma is discussed. The change in the ratio of Cdouble bond; length as m-dashO/C–O bonds is a significant factor influencing the wettability of PCL. As the contact angle decreases, the level of Cdouble bond; length as m-dashO bonds tends to rise. Surface roughness alterations are the driving force for lasting increases in wettability, while the surface functional species are shorter lived. We can approximate from ageing that the increase in wettability for PCL after plasma treatment is 55–60% due to roughening and 40–45% due to surface functionalization for the plasma device investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive nonlinear model is put forward for coupled longitudinal to transverse displacements in a horizontal dust mono-layer, levitated under the combined influence of gravity and an electric and/or magnetic sheath field. A set of coupled nonlinear evolution equations are obtained in a discrete description, and a pair of coupled (Boussinesq-like) PDEs are obtained in the continuum approximation. Finally, the amplitude modulation of the coupled modes is discussed, pointing out the importance of the coupling. All these results are generic, i.e. valid for any assumed form of the inter-grain interaction potential U and the sheath potential Phi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear propagation of amplitude-modulated electrostatic wavepackets in an electron-positron-ion (e-p-i) plasma is considered, by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasi-thermal acoustic-like lower mode and a Langmuir-like optic-type upper one. These results equally apply in warm pair ion ( e. g. fullerene) plasmas contaminated by a small fraction of stationary ions ( or dust), in agreement with experimental observations and theoretical predictions in pair plasmas. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scales perturbation technique, the basic set of model equations is reduced to a nonlinear Schrodinger (NLS) equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower ( acoustic) mode is mostly stable for large wavelengths, and may propagate in the form of a dark-type envelope soliton ( a void) modulating a carrier wavepacket, while the upper linear mode is intrinsically unstable, and thus favours the formation of bright-type envelope soliton ( pulse) modulated wavepackets. The stability ( instability) range for the acoustic ( Langmuir-like optic) mode shifts to larger wavenumbers as the positive-to-negative ion temperature ( density) ratio increases. These results may be of relevance in astrophysical contexts, where e-p-i plasmas are encountered, and may also serve as prediction of the behaviour of doped ( or dust-contaminated) fullerene plasmas, in the laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear amplitude modulation of electromagnetic waves propagating in pair plasmas, e.g., electron-positron or fullerene pair-ion plasmas, as well as three-component pair plasmas, e.g., electron-positron-ion plasmas or doped (dusty) fullerene pair-ion plasmas, assuming wave propagation in a direction perpendicular to the ambient magnetic field, obeying the ordinary (O-) mode dispersion characteristics. Adopting a multiple scales (reductive perturbation) technique, a nonlinear Schrodinger-type equation is shown to govern the modulated amplitude of the magnetic field (perturbation). The conditions for modulation instability are investigated, in terms of relevant parameters. It is shown that localized envelope modes (envelope solitons) occur, of the bright- (dark-) type envelope solitons, i.e., envelope pulses (holes, respectively), for frequencies below (above) an explicit threshold. Long wavelength waves with frequency near the effective pair plasma frequency are therefore unstable, and may evolve into bright solitons, while higher frequency (shorter wavelength) waves are stable, and may propagate as envelope holes.(c) 2007 American Institute of Physics.