988 resultados para Lymphocytosis -- immunology
Resumo:
Adenosine is a ubiquitous molecule present in every cell of the human body. It has a wide range of physiological functions mediated predominantly through specific cell surface adenosine receptors. Adenosine has both pro- and anti-inflammatory effects and acts on inflammatory and resident immune cells and antioxidant enzymes. The elevation of adenosine in the bronchoalveolar lavage (BAL) fluid of asthmatics combined with its bronchoconstrictor effect on the airways in asthmatics has led to increased research into the contribution of adenosine in the pathophysiology of inflammation and asthma. This review looks at the airway response to adenosine and at the interaction of adenosine with mast cells and basophils.
Resumo:
Background: Adenosine 5′-monophosphate (AMP) has been shown to cause bronchoconstriction in atopic subjects but to have no effect on nonatopic nonasthmatic subjects. Endobronchial AMP challenge has previously been shown to cause mast cell mediator release in asthmatic subjects, but it is unknown whether a similar response occurs in atopic nonasthmatic and nonatopic nonasthmatic control subjects who have no response to inhalation AMP challenge.
Objective: This study examined the change in mast cell–derived products after endobronchial saline challenge and AMP challenge in subjects with and without a positive inhalation response to AMP.
Methods: Inhalation challenge with AMP challenge was performed in normal, atopic nonasthmatic, and atopic asthmatic subjects. Levels of mast cell mediators were measured after endobronchial adenosine challenge and after placebo endobronchial saline challenge.
Results: There were significant increases in histamine, tryptase, protein, and prostaglandin D2 levels (P = .02, P = .02, P = .01, and P = .01, respectively) after AMP challenge compared with after saline challenge in nonatopic nonasthmatic subjects. There was no significant increase in any mediator in either of the other 2 groups.
Conclusion: This study suggests dissociation between mediator release and bronchoconstriction in response to AMP.
Resumo:
Secretory leucoprotease inhibitor (SLPI) is a neutrophil serine protease inhibitor constitutively expressed at many mucosal surfaces, including that of the lung. Originally identified as a serine protease inhibitor, it is now evident that SLPI also has antimicrobial and anti-inflammatory functions, and therefore plays an important role in host defense. Previous work has shown that some host defense proteins such as SLPI and elafin are susceptible to proteolytic degradation. Consequently, we investigated the status of SLPI in the cystic fibrosis (CF) lung. A major factor that contributes to the high mortality rate among CF patients is Pseudomonas aeruginosa infection. In this study, we report that P. aeruginosa-positive CF bronchoalveolar lavage fluid, which contains lower SLPI levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective at cleaving recombinant human SLPI. Additionally, we found that only NE inhibitors were able to prevent SLPI cleavage, thereby implicating NE in this process. NE in excess was found to cleave recombinant SLPI at two novel sites in the NH(2)-terminal region and abrogate its ability to bind LPS and NF-kappaB consensus binding sites but not its ability to inhibit activity of the serine protease cathepsin G. In conclusion, this study provides evidence that SLPI is cleaved and inactivated by NE present in P. aeruginosa-positive CF lung secretions and that P. aeruginosa infection contributes to inactivation of the host defense screen in the CF lung.
Resumo:
There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.
Resumo:
IIL-27 counters the effect of TGF-beta+IL-6 on naive CD4(+) T cells, resulting in near complete inhibition of de novo Th17 development. In contrast, little is known about the effect of IL-27 on already differentiated Th17 cells. A better understanding of how IL-27 regulates these cells is needed to evaluate the therapeutic potential of IL-27 in Th17 cells-associated diseases. In this study, we show that IL-27 had surprisingly little effect on committed Th17 cells, despite its expression of a functional IL-27R. Contrary to de novo differentiation of Th17 cells, IL-27 did not suppress expression of retinoid-related orphan receptor (ROR)gammat or RORalpha in committed Th17 cells. Consistent with this finding, the frequency of committed Th17 cells and their cytokine secretion remained unaffected by IL-27. Both memory Th17 cells (CD4(+)CD25(-)CD62L(low)) that developed in vivo and encephalitogenic Th17 cells infiltrating the CNS of mice developing experimental autoimmune encephalomyelitis produced similar amounts of IL-17A when reactivated with IL-23 in the absence and presence of exogenous IL-27. Finally, IL-27 failed to suppress encephalitogenicity of Th17 cells in an adoptive transfer of experimental autoimmune encephalomyelitis. Analysis ex vivo of transferred Th17 cells in the spleen and CNS of recipient mice showed that cells retained similar phenotype irrespective of whether cells were treated or not with IL-27. Our data demonstrate that in contrast to inhibition of de novo differentiation of Th17 cells, IL-27 has little or no effect on committed Th17 cells. These findings indicate that therapeutic applications of IL-27 might have a limited efficacy in inflammatory conditions where aggressive Th17 responses have already developed.
Resumo:
Background: Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. Methods: EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results: Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion: IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions. © 2009 Sarma et al; licensee BioMed Central Ltd.
Resumo:
We have previously shown that mice lacking the IL-12-specific receptor subunit ß2 (IL-12Rß2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rß2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rß2-/- mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rß2-deficient mice to autoimmune diseases. T cells from IL-12Rß2-/- mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25+CD4+ regulatory T cells (Tregs) in the thymus and spleen of IL-12Rß2-/- mice were comparable to those of WT mice. However, IL-12Rß2-/- mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-ß, as shown by significantly lower numbers of CD25+CD4+ T cells that expressed Foxp3. Functionally, CD25+CD4+ Tregs derived from IL-12Rß2-/- mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rß2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rß2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway. Copyright © 2008 by The American Association of Immunologists, Inc.