949 resultados para Lung neoplasm
Resumo:
Replacement of the heart and both lungs or single lung transplantation has been performed in a few cases of terminal (cardio) pulmonary disease in childhood. It remains unclear whether pulmonary allografts will meet the demands of a growing organism. Six domestic pigs (mean body weight, 24 kg) underwent left lung transplantation from donors of equal weight. Immunosuppression consisted of cyclosporine, azathioprine, and corticosteroids. After the pigs doubled their body weight, growth of the lung was assessed by bronchography and pulmonary angiography. In transplant animals it took 11 weeks (normal animals, 6 weeks) for their weight to double. At that time, the bronchial tree showed similar growth when compared with nontransplant animals of equal weight. The diameter of the left lower lobe bronchus (9.2 +/- 0.4 mm) was significantly greater than that of animals of 24 kg body weight (7.5 +/- 0.3 mm; p less than 0.01) but comparable to that of normal pigs of similar weight (9.0 +/- 0.5 mm). The same applied for length of the left lower lobe bronchus (transplants, 95 +/- 6.7 mm; controls 24 kg, 67 +/- 2 mm [p less than 0.01]; controls 48 kg, 93 +/- 3 mm). Similar growth tendencies were observed in the pulmonary vascular tree. The diameter of the left lower lobe artery was 9.4 +/- 98 mm in 48 kg transplant pigs, compared with 9.7 +/- 1.2 mm in 24 kg control pigs and 8.5 +/- 0.8 mm in 48 kg control pigs. In one case of recurrent severe pulmonary rejection, the lung did not grow. We conclude from this study that growth is retarded by immunosuppression.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Heart and lung transplantation has been performed in cases of end-stage cardiopulmonary disease in infants. Nevertheless, it still remains unclear whether lung allografts adjust to a growing organism. In 6 young domestic pigs unilateral left lung allotransplantation was performed. Immunosuppression consisted of a triple drug therapy including cyclosporine, azathioprine, and corticosteroids. Lung growth was studied by using bronchography, pulmonary angiography, and lung histology. After 11 weeks the transplanted animals had doubled their body weight from 24 kg to 48 kg. Non-transplanted animals in contrast doubled their weight within only 6 weeks. The growth retardation was attributed to the immunosuppressive therapy. The bronchial tree and pulmonary vasculature of lung allografts showed a similar growth potential to non-transplanted lungs in animals of equivalent body weight. In one case of recurrent severe rejection of the lung no growth was observed. Therefore it was concluded that lung allografts grow adequately according to the development of the recipient organism. Lung transplantation in children does not seem to be restricted by a limited growth potential of the graft.
Resumo:
The occurrence of severe graft failure after lung transplantation which appears refractory to conventional treatment represents a difficult situation with regard to the therapeutic strategies available. Of 17 patients undergoing single lung transplantation at our center, 2 developed early graft failure. In both, temporary artificial cardiopulmonary support by means of extracorporeal membrane oxygenation became necessary as a bridge to retransplantation. Both patients were successfully retransplanted after 8 h and 232 h, respectively, of extra-corporeal support. Postoperatively, there was a variety of complications. The first patient completely recovered from temporary severe cerebral dysfunction diagnosed as "locked-in syndrome". She was discharged from hospital on the 93rd postoperative day and remains alive and well 10 months after her operation. The other patient recovered well early after retransplantation. Later, however, airway problems developed, requiring the implantation of endotracheal stents. Cachexia and several episodes of viral pneumonia contributed to the progressive deterioration of her clinical status. She finally died after being hospitalized for 5 months after the original operation. These two cases illustrate the feasibility of using extracorporeal membrane oxygenation as a bridge to pulmonary transplantation.
Resumo:
Direct revascularization of a bronchial artery has been proposed as a measure to alleviate the problem of bronchial ischemia after lung transplantation. To assess the effect of restoration of arterial blood flow to the transplanted bronchus, bronchial mucosal blood flow was measured in a model of modified unilateral lung transplantation in pigs. Laser Doppler velocimetry (LDV) and radioisotope studies using radio-labeled erythrocytes (RI) were used to measure blood flow at the donor main carina (DC) and upper lobe carina (DUC) after 3 h of reperfusion. The recipient carina was used as a reference point; values obtained by LDV and RI were expressed as percentage of blood flow at the recipient carina. Two groups of animals were studied. In group 1 (n = 6) standard unilateral transplantation was performed; in group 2 (n = 6) a left bronchial artery was reimplanted into the descending thoracic aorta of the recipient. No differences were observed between the two groups with respect to preoperative or postoperative gas exchange or hemodynamics. In group 1, bronchial blood flow at the DC was 37.6 +/- 2.2% (LDV) and 44.1 +/- 14.8% (RI) of reference blood flow. At the DUC, blood flow was 54.9 +/- 7.7% (LDV) and 61.6 +/- 25.7% (RI) of normal flow. In group 2, blood flow was increased at the DC as measured by LDV (55.3 +/- 17.1%; p less than 0.05) and by RI (60.8 +/- 25.3%; p less than 0.2). A similar increase was found at the DUC (LDV: 81.8 +/- 19.3%; p less than 0.05; RI: 88.6 +/- 31.0%; p less than 0.2). It is concluded that there is a significant gradient of blood flow from intra- to extrapulmonary airways after lung transplantation. Reimplantation of a bronchial artery results in significant improvement of graft bronchial blood flow. Restoration of bronchial perfusion to normal levels, however, cannot be achieved, suggesting a possible defect in the microcirculation of the donor airways.