949 resultados para Low-density parity-check (LDPC) codes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of ceramic materials in ballistic armor is considerable. Such materials can be very harder and lighter than metallic materials commonly used and it presents advantages to replace metallic materials when necessary toughness can be achieved. However, as SiC and Al2O3 ceramic, traditionally used for shielding, still have high manufacturing cost or low density do not have enough to shield applications such as aircraft. An alternative is the glass-ceramics, ceramics obtained by controlled crystallization of glasses, whose properties can be adjusted by choosing the chemical composition of glass, heat treatment of crystallization and special treatments such as ion exchange on the surface, resulting in increased mechanical strength . The objective of this project is to study the kinetics of crystallization of a glass composition based on cordierite (2MgO.2Al2O3.5SiO2), low density and high hardness, for the manufacture of glass-ceramics for ballistic tests. Shown in this report are results of heat treatment of crystallization and characterization by thermal analysis (DSC) glass obtained previously, indicating uneven distribution of crystals, and drying, weighing, mixing of raw materials and a new fusion of glass, the same composition

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of technology for structural composites has as one of its ends form a set of materials that combine high values of mechanical strength and stiffness and low density. Today, companies like Embraer and PETROBRAS and research institutions like NASA, working with these materials with recognized advantages in terms of weight gain, increased performance and low corrosion. We have developed a systematic study to determine the bond strength between composite carbon fiber / epoxy and fiberglass / epoxy laminate both bonded to a carbon steel which are widely used in the petrochemical industry and repair. For morphological evaluation and bonding between materials of different natures, ultrasound analysis, optical microscopy and stereoscopy were performed. To simulate actual conditions, the composites were subjected to conditioning by using heat shock temperatures from -50 to 80 ° C for 1000 cycles for composite carbon fiber / epoxy composites and 2000 cycles for fiberglass / epoxy . The use of composites studied here proved to be efficient to perform repairs in metallic pipes with application petrochemical, as when exposed to sudden changes of temperature (-50 ° to 80 ° C) cycling at 1000 to 2000 times, its mechanical properties (shear and tensile) practically do not change

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supermarket plastic bags are produced by high density polyethylene (HDPE) and low density polyethylene (LDPE) resins. In Brazil, are produced annually around 150 plastic bags per capita. Disposed in landfills, the supermarket plastic bags prevent the passage of water by slowing the breakdown of biodegradable materials and hindering compaction of waste, according to their low degradability. This work investigated the biodegradation of PE bags containing additive oxo-biodegradable and bags without additives: buried in soil columns, exposed in a controlled environment and exposed to air. The analysis methods used to assess the changes brought in the bags with respect to microbial action and exposure time were weight loss, thickness measurement, infrared (FTIR), scanning electron microscopy (SEM) and contact angle. The results showed that the use of prodegradant agents such as oxobiodegradable additives in polyethylene bags, buried in soil for 270 days, was not efficient to accelerate the biodegradation by microorganisms. It seems that these additives have been more efficient to degrade the colored pigmentation of printed bags, under the influence of light and heat.