947 resultados para Low intensity irradiation
Resumo:
Background. Oxidative stress is a significant contributor to cardiovascular diseases (CVD) in haemodialysis (HD) patients, predisposing to the generation of oxidized low-density lipoprotein (oxLDL) or electronegatively charged LDL subfraction. Antioxidant therapy such as alpha-tocopherol acts as a scavenger of lipid peroxyl radicals attenuating the oxidative stress, which decreases the formation of oxLDL. The present study was designed to investigate the influence of the alpha-tocopherol supplementation on the concentration of electronegative low-density lipoprotein [LDL(-)], a minimally oxidized LDL, which we have previously described to be high in HD patients. Methods. Blood samples were collected before and after 120 days of supplementation by alpha-tocopherol (400 UI/day) in 19 stable HD patients (50 +/- 7.8 years; 9 males). The concentrations of LDL(-) in blood plasma [using an anti-LDL- human monoclonal antibody (mAb)] and the anti-LDL(-) IgG auto-antibodies were determined by ELISA. Calculation of body mass index (BMI) and measurements of waist circumference (WC), triceps skin folds (TSF) and arm muscle area (AMA) were performed. Results. The plasma alpha-tocopherol levels increased from 7.9 mu M (0.32-18.4) to 14.2 mu M (1.22-23.8) after the supplementation (P = 0.02). The mean concentration of LDL(-) was reduced from 570.9 mu g/mL (225.6-1241.0) to 169.1 mu g/mL (63.6-621.1) (P < 0.001). The anti-LDL(-) IgG auto-antibodies did not change significantly after the supplementation. The alpha-tocopherol supplementation also reduced the total cholesterol and LDL-C levels in these patients, from 176 +/- 42.3 mg/dL to 120 +/- 35.7 mg/dL (P < 0.05) and 115.5 +/- 21.4 mg/dL to 98.5 +/- 23.01 mg/dL (P < 0.001), respectively. Conclusion. The oral administration of alpha-tocopherol in HD patients resulted in a significant decrease in the LDL(-), total cholesterol and LDL-C levels. This effect may favour a reduction in cardiovascular risk in these patients, but a larger study is required to confirm an effect in this clinical setting.
Resumo:
We investigated the effect of sodium reduction by partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) on the manufacture of Minas fresh cheese during 21 d of refrigerated storage. Four treatments of low-sodium Minas fresh cheese were manufactured, with partial replacement of NaCl by KCl at 0, 25, 50, and 75% (wt/wt), respectively. The cheeses showed differences in the content of moisture, ash, protein, salt, and lipid contents, as well as on the extent of proteolysis and hardness throughout the storage period. However, no difference was observed among treatments within each storage day tested. The partial substitution of NaCl by KCl decreased up to 51.8% the sodium concentration of the cheeses produced. The consumer test indicated that it is possible to manufacture a low-sodium Minas fresh cheese that is acceptable to consumers by partial substitution of NaCl by KCl at 25% (wt/wt) in the salting step.