966 resultados para Loss prevention
Resumo:
The optical loss of whispering gallery modes of resonantly excited microresonator spheres is determined by optical lifetime measurements. The phase-shift cavity ring-down technique is used to extract ring-down times and optical loss from the difference in amplitude modulation phase between the light entering the microresonator and light scattered from the microresonator. In addition, the phase lag of the light exiting the waveguide, which was used to couple light into the resonator, was measured. The intensity and phase measurements were fully described by a model that assumed interference of the cavity modes with the light propagating in the waveguide.
Resumo:
This paper presents a new method for complex power flow tracing that can be used for allocating the transmission loss to loads or generators. Two algorithms for upstream tracing (UST) and downstream tracing (DST) of the complex power are introduced. UST algorithm traces the complex power extracted by loads back to source nodes and assigns a fraction of the complex power flow through each line to each load. DST algorithm traces the output of the generators down to the sink nodes determining the contributions of each generator to the complex power flow and losses through each line. While doing so, active- and reactive-power flows as well as complex losses are considered simultaneously, not separately as most of the available methods do. Transmission losses are taken into consideration during power flow tracing. Unbundling line losses are carried out using an equation, which has a physical basis, and considers the coupling between active- and reactive-power flows as well as the cross effects of active and reactive powers on active and reactive losses. The tracing algorithms introduced can be considered direct to a good extent, as there is no need for exhaustive search to determine the flow paths as these are determined in a systematic way during the course of tracing. Results of application of the proposed method are also presented.
Resumo:
This paper presents a new method for transmission loss allocation. The method is based on tracing the complex power flow through the network and determining the share of each load on the flow and losses through each line. Transmission losses are taken into consideration during power flow tracing. Unbundling line losses is carried out using an equation, which has a physical basis, and considers the coupling between active and reactive power flows as well as the cross effects of active and reactive power on active and reactive losses. A tracing algorithm which can be considered direct to a good extent, as there is no need for exhaustive search to determine the flow paths as these are determined in a systematic way during the course of tracing. Results of application of the proposed method are also presented.
Resumo:
This paper presents a new method for transmission loss allocation in a deregulated electrical power market. The proposed method is based on physical flow through transmission lines. The contributions of individual loads to the line flows are used as basis for allocating transmission losses to different loads. With minimum assumptions, that sound to be reasonable and cannot be rejected, a novel loss allocation formula is derived. The assumptions made are: a number of currents sharing a transmission line distribute themselves over the cross section in the same manner; that distribution causes the minimum possible power loss. Application of the proposed method is straightforward. It requires only a solved power flow and any simple algorithm for power flow tracing. Both active and reactive powers are considered in the loss allocation procedure. Results of application show the accuracy of the proposed method compared with the commonly used procedures.
Resumo:
175 nm-thick Ba0.5Sr0.5TiO3 (BST) thin film fabricated by pulsed laser deposition (PLD) technique is found to be a mixture of two distributions of material. We discuss whether these two components are nano-regions of paraelectric and ferroelectric phases, or a bimodal grain-size distribution, or an effect of oxygen vacancy gradient from the electrode interface. The fraction of switchable ferroelectric phase decreases under bipolar pulsed fields, but it recovers after removal of the external fields. The plot of capacitance in decreasing dc voltage (C(Vdown arrow) versus that in increasing dc 61 voltage C(Vup arrow) is a superposition of overlapping of two triangles, in contrast to one well-defined triangle for typical ferroelectric SrBi2Ta2O9 thin films.