972 resultados para Linear elastic
Resumo:
A theoretical model is presented to investigate the size-dependent bending elastic properties of a nanobeam with the influence of the surface relaxation and the surface tension taken into consideration. The surface layer and its thickness of a nanostructure are defined unambiguously. A three-dimensional (3D) crystal model for a nanofilm with n layers of relaxed atoms is investigated. The four nonzero elastic constants of the nanofilm are derived, and then the Young's modulus for simple tension is obtained. Using the relation of energy equilibrium, the size-dependent effective elastic modulus and effective flexural rigidity of a nanobeam with two kinds of cross sections are derived, and their dependence on the surface relaxation and the surface tension is analysed.
Resumo:
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The viscoelastic deformation of Ce-based bulk metallic glasses (BMGs) with low glass transition temperature is investigated at room temperature. Contact stiffness and elastic modulus of Ce-based BMGs cannot be derived using the conventional Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)]. The present work shows that the time dependent displacement of unloading segments can be described well by a generalized Kelvin model. Thus, a modified Oliver-Pharr method is proposed to evaluate the contact stiffness and elastic modulus, which does, in fact, reproduce the values obtained via uniaxial compression tests. (c) 2007 American Institute of Physics.